## Physics Nobel honors underpinnings of exotic matter

- Details
- Published: Tuesday, 04 October 2016 11:03

A trio of researchers who laid the foundation for understanding numerous exotic phases of matter have split the 2016 Nobel Prize in Physics.

The Royal Swedish Academy of Sciences awarded the prize "for theoretical discoveries of topological phase transitions and topological phases of matter" to three laureates: David Thouless of the University of Washington, Duncan Haldane of Princeton University and Michael Kosterlitz of Brown University.

The research behind the prize "illustrates, in a very nice way, the interplay between physics and mathematics," said Thors Hans Hansson, a physicist who introduced the mathematics behind the prize at the announcement ceremony using a cinnamon bun, a bagel and a pretzel.

Topology is the branch of mathematics that offers a coarse distinction between those three baked goods, often capturing differences by counting the number of holes that different objects have. In topology, a bagel and a pretzel are fundamentally different because there is no way to add more holes to a bagel without tearing the dough and reshaping it.

The application of topology to physics was a revelation in the late 1970s and 1980s. Many puzzling behaviors defied explanation until topology was considered. For example, experiments on thin materials subjected to low temperatures and enormous magnetic fields exhibited an odd behavior. Instead of their electrical current changing continuously as a magnetic field varied, it made discrete jumps. Now known as the quantum Hall effect, this behavior arose from the topological properties of electrons in the material. When confined to two dimensions and subjected to extreme conditions, the quantum behavior of electrons can get knotted up in topologically distinct ways. This realization explained where the jumps in current occurred and why they were stable even when samples were less than pristine.

Many researchers at JQI, CMTC and CNAM take advantage of the interplay between topology and physics, using it to guide light in novel ways or study how to build a quantum computer. They've even extended some of the early work by Thouless to create a quantum pump.

Stay tuned for updates as we continue to follow this year's Nobel Prize in Physics. Please visit JQI to follow the updates.

Research Contact

Sankar Das Sarma: This email address is being protected from spambots. You need JavaScript enabled to view it.

Jay Deep Sau: This email address is being protected from spambots. You need JavaScript enabled to view it.

Victor Galitski: This email address is being protected from spambots. You need JavaScript enabled to view it.