UMD CMNS Physics S1 Color

Measuring the Magnetization of Wandering Spins

The swirling field of a magnet—rendered visible by a sprinkling of iron filings—emerges from the microscopic behavior of atoms and their electrons. In permanent magnets, neighboring atoms align and lock into place to create inseparable north and south poles. For other materials, magnetism can be induced by a field strong enough to coax atoms into alignment.

In both cases, atoms are typically arranged in the rigid structure of a solid, glued into a grid and prevented from moving. But the team of JQI Fellow Ian Spielman has been studying the magnetic properties of systems whose tiny constituents are free to roam around—a phenomenon called “itinerant magnetism."

“When we think of magnets, we usually think of some lattice,” says graduate student Ana Valdés-Curiel. Now, in a new experiment, Valdés-Curiel and her colleagues have seen the signatures of itinerant magnetism arise in a cold cloud of rubidium atoms.

The team mapped out the magnetic properties of their atomic cloud, probing the transition between unmagnetized and magnetized phases. Using interfering lasers, the researchers dialed in magnetic fields and observed the atoms’ responses. The experiment, which was the first to directly observe magnetic properties that result from the particles’ motion, was reported March 30 in Nature Communications. Read More

Rogue rubidium leads to atomic anomaly

The behavior of a few rubidium atoms in a cloud of 40,000 hardly seems important. But a handful of the tiny particles with the wrong energy may cause a cascade of effects that could impact future quantum computers.

Some proposals for quantum devices use Rydberg atoms—atoms with highly excited electrons that roam far from the nucleus—because they interact strongly with each other and offer easy handles for controlling their individual and collective behavior. Rubidium is one of the most popular elements for experimenting with Rydberg physics.

Now, a team of researchers led by JQI Fellows Trey Porto, Steven Rolston and Alexey Gorshkov have discovered an unwanted side effect of trying to manipulate strongly interacting rubidium atoms: When they used lasers to drive some of the atoms into Rydberg states, they excited a much larger fraction than expected. The creation of too many of these high-energy atoms may result from overlooked “contaminant” states and could be problematic for proposals that rely on the controlled manipulation of Rydberg atoms to create quantum computers. The new results were published online March 16 in Physical Review Letters.

Read More

Characterizing Quantum Hall Light Zooming Around a Photonic Chip

When it comes to quantum physics, light and matter are not so different. Under certain circumstances, negatively charged electrons can fall into a coordinated dance that allows them to carry a current through a material laced with imperfections. That motion, which can only occur if electrons are confined to a two-dimensional plane, arises due to a phenomenon known as the quantum Hall effect.

Researchers, led by Mohammad Hafezi, a JQI Fellow, have made the first direct measurement that characterizes this exotic physics in a photonic platform. The research was published online Feb. 22 and featured on the cover of the March 2016 issue of Nature Photonics. These techniques may be extended to more complex systems, such as one in which strong interactions and long-range quantum correlations play a role. Read More

Gravitational Waves Detected 100 Years After Einstein’s Prediction

An international team of scientists that includes UMD physicists has opened an unprecedented new window on the universe with the first observation of ripples in the fabric of space-time. These ripples, known as gravitational waves, were generated by the colliding of two massive black holes a billion light-years away from Earth. Though such black hole collisions have long been predicted, they had never before been observed. Read More