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Spin–orbit coupling in quantum gases
Victor Galitski1,2 & Ian B. Spielman1

Spin–orbit coupling links a particle’s velocity to its quantum-mechanical spin, and is essential in numerous condensed
matter phenomena, including topological insulators and Majorana fermions. In solid-state materials, spin–orbit
coupling originates from the movement of electrons in a crystal’s intrinsic electric field, which is uniquely prescribed
in any given material. In contrast, for ultracold atomic systems, the engineered ‘material parameters’ are tunable: a
variety of synthetic spin–orbit couplings can be engineered on demand using laser fields. Here we outline the current
experimental and theoretical status of spin–orbit coupling in ultracold atomic systems, discussing unique features that
enable physics impossible in any other known setting.

A particle’s spin is quantized. In contrast to the angular momen-
tum of an ordinary (that is, classical) spinning top, which can
take on any value, measurements of an electron’s spin angular

momentum (or just ‘spin’) along some direction can result in only two
discrete values: 6B/2, commonly referred to as spin-up or spin-down.
This internal degree of freedom has no classical counterpart; in con-
trast, a quantum particle’s velocity is directly analogous to a classical
particle’s velocity. It is therefore no surprise that spin is a cornerstone
for a variety of deeply quantum materials such as quantum magnets1

and topological insulators2. Spin–orbit coupling (SOC) intimately
unites a particle’s spin with its momentum, bringing quantum mecha-
nics to the forefront; in materials, this often increases the energy scale
at which quantum effects are paramount.

The practical utility of any material is determined, not only by its
intrinsic functional behaviour, but also by the energy or temperature
scale at which that behaviour is present. For example, the quantum Hall
effects—rare examples of truly quantum physics where the spin is largely
irrelevant—are confined to highly specialized laboratories because these
phenomena manifest themselves only under extreme conditions: at
liquid-helium temperatures and high magnetic fields3,4. The integer
quantum Hall effect (QHE) was the first observed topological insulator,
but it has a broken time-reversal symmetry. This is in contrast with a
new class of topological insulators (see Box 1), which rely on SOC
instead of magnetic fields for their quantum properties, and are expected
to retain their quantum nature up to room temperature2.

As fascinating and unusual as the existing topological world of spin–
orbit-coupled systems is, all this physics is largely based on a non-
interacting picture of independent electrons filling up a prescribed
topological landscape. But there is clearly physics beyond this, as suggested
by the fractional QHE materials, where interactions between electrons
yield phenomena qualitatively different from those encountered in integer
QHE. In fractional QHE systems, the charged excitations are essentially
just fractions of an electron, with fractional charge: a new type of emergent
excitation with no analogue elsewhere in physics. Furthermore, even non-
Abelian excitations are possible: a system can be in one of many states of
equal energy in which ‘non-Abelions’ exist at the same location, and differ
only by the sequence of events that created them. At zero magnetic field,
strong interactions and strong SOC can also give rise to fractionalization in
topological insulators: the emergence of excitations that are fundamentally
different from the constituent particles. We currently know little about
these fractional topological insulators, but we do know that they should
exist and we also expect them to be stable at a much larger range of

parameters and experimental temperatures than the fractional QHE: per-
haps even up to room temperature in solids.

It is ironic then that we focus on the most fundamental behaviour of
spin–orbit-coupled systems using ultracold atoms at nano-Kelvin tem-
peratures. These nominally low temperatures are often deceiving, because
what matters is not an absolute temperature scale, but rather the temper-
ature relative to other energy scales in the system (for example, the Fermi
energy), and from this perspective, ultracold atom systems are often not
that cold5. However, ultracold atomic systems are among the simplest and
most controllable of quantum many-body systems. Although only one
type of SOC has been experimentally realized to date, realistic theoretical
proposals to create a range of SOCs abound, many of which have no
counterpart in material systems6–10. The laser-coupling technique first
experimentally implemented by our team11,12, and now implemented in
laboratories around the world, is well suited to realize topological states
with one-dimensional atomic systems13. In contrast to solid-state systems,
in which we do not control or even know with certainty all details of the
complicated material structure, ultracold atoms are remarkable in that
most aspects of their environment can be engineered in the laboratory.
Also, their tunable interactions and their single-particle potentials are both
well characterized: the full atomic Hamiltonian is indeed known. This
provides a level of control unprecedented in condensed matter and allows
one to address basic physics questions at the intersection of material sci-
ence and many-body theory. To study material systems, theorists create
‘spherical-cow’ models of real materials, whereas in cold atom physics
experimentalists can actually make spherical cows.

Interactions—even the simple contact interactions present in cold
atom systems—enrich the physics of quantum systems by engendering
new phases and phenomena. For example, when combined with SOC,
the celebrated superfluid–Mott-insulator transition14,15 gives rise to
numerous magnetic phenomena in both the insulating and superfluid
phases16,17. Such interacting systems are often impossible to treat exactly
with current theoretical techniques, but cold atom experiments can
directly realize these systems and shed light on the complicated and
often exotic physics mediated by the strong interactions. Likewise, by
asking basic questions such as how strong interactions can destroy
topological insulators—or create them—we can understand the mecha-
nisms underlying fractional topological insulators. These exotic quantum
states have not yet been observed, but are present in realistic theoretical
descriptions of ultracold atoms with SOC18,19.

Ultracold atoms with synthetic SOCs8 can not only shed light on the out-
standing problems of condensed matter physics, but also yield completely
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new phenomena with no analogue elsewhere in physics. A notable example
of such a unique system is that of spin–orbit-coupled bosons with just two
spin states: a synthetic spin-half system. The existence of such particles
with real spin-half is prohibited in fundamental physics owing to Pauli’s
spin-statistics theorem, but synthetic symmetries—imposed by restricting
the states available to the atoms—relax these constraints, allowing bosons
with pseudo-spin-half to exist20. SOC also results in a wide array of new
many-body quantum states, including a zoo of exotic quantum spin states
in spin–orbit-coupled Mott insulators16,17,21, unusual spin–orbit-coupled
Bose–Einstein condensates (BECs) with a symmetry protected degenerate
ground state22, and perhaps even strongly correlated composite fermion
phases analogous to the fractional QHE states in electron systems18. These
are just a few examples of phenomena from a trove of exciting physics that
is waiting to be uncovered in this emerging and fast-developing field.

Basics of SOC
In any context, SOC requires symmetry breaking because the coupling
strength is related to velocity as measured in a preferred reference frame
(such as an electron’s velocity with respect to its host crystalline lattice,
or an atom’s velocity with respect to a reference frame defined by its
illuminating laser beams). Conventional SOC thus results from rela-
tivistic quantum mechanics, where the spin is a fundamental and inse-
parable component of electrons as described by the Dirac equation. In
the non-relativistic limit, the Dirac equation reduces to the familiar
Schrödinger equation, with relativistic corrections including an import-
ant term coupling the electron’s spin to its momentum and to gradients
of external potentials. This is the fundamental origin of SOC, which
underlies both the L?S coupling—linking the electronic orbital angular
momentum L to its spin angular momentum S—familiar in atomic and
molecular systems and all spin–orbit phenomena in solids. SOC can
most simply be understood in terms of the familiar –m?B Zeeman inter-
action between a particle’s magnetic moment m parallel to the spin, and a
magnetic field B present in the frame moving with the particle.

SOC is most familiar in traditional atomic physics where it gives rise to
atomic fine-structure splitting, and it is from this context that it acquires its
name: a coupling between an electron’s spin and its orbital angular
momentum about the nucleus. The electric field produced by the charged
nucleus gives rise to a magnetic field in the reference frame moving with an
orbiting electron (along with an anomalous factor of two resulting from the
electron’s non-inertial trajectory encircling the atomic centre of mass),
leading to a momentum-dependent effective Zeeman energy.

In materials, the connection to a momentum-dependent Zeeman
energy is particularly clear. For example, the Lorentz-invariant Maxwell’s
equations dictate that a static electric field E 5 E0ez in the laboratory
frame (at rest, where ex,y,z are the three Cartesian unit vectors defining
the x, y and z directions in space) gives a spin–orbit magnetic field
BSO 5 (E0B/mc2)3(kxey – kyex) in the frame of an object moving with
momentum Bk, where c is the speed of light in vacuum and m is the
particle’s mass. The resulting momentum-dependent Zeeman inter-
action –mB < sxky 2 sykx is known as Rashba SOC23. This often
arises from the built-in electric field in two-dimensional semi-
conductor heterostructures resulting from asymmetries of the con-
fining potential24, and is depicted in Fig. 1. Figure 1d plots a typical
spin–orbit dispersion relation, where the minima for each spin state
(red or blue) is displaced from zero; in the case of Rashba SOC, this
dispersion is axially symmetric, meaning that this double-well struc-
ture is replicated for motion in any direction in the ex–ey plane. Because
of the momentum-dependent Zeeman interaction, the equilibrium
alignment of a particle’s magnetic moment depends on its velocity.
Quantum-mechanically, this implies that the quantum-mechanical
eigenstates are generally momentum-dependent superpositions of
the initial :j i and ;j i spin states.

In most condensed matter systems, electrons move in a crystal potential
and when there is a potential gradient on the average, effective spin–orbit
interactions arise. These usually originate either from a lack of mirror sym-
metry in two-dimensional systems leading to the Rashba SOC described
above23, or from a lack of inversion symmetry in bulk crystals, leading to
other forms of SOC such as the linear Dresselhaus SOC25, described by a
Zeeman interaction –m?B < sxkx 2 syky reminiscent of that of Rashba SOC.

SOC phenomena are ubiquitous in solids and have been known to
exist since the early days of quantum mechanics and band theory.
However, rapid developments in the field of spintronics26 have recently
moved these phenomena back to the forefront of condensed matter
research. This renewal of interest was stimulated by a number of exciting
proposals for spintronic devices, whose functionality hinges on an
electric-field-dependent coupling between the electron spin and its
momentum. Apart from these potential useful applications, spin–
orbit-coupled systems turned out to display an amazing variety of
fundamentally new and fascinating phenomena: spin-Hall effects27,28,
topological insulators2, Majorana13 and Weyl fermions29, exotic spin
textures in disordered systems30, to name just a few.

BOX 1

Topological matter
Topological insulators2 are strongly spin–orbit-coupled materials that
have seeminglymutually exclusiveproperties: theyareboth insulating
and metallic at the same time. In their interior (bulk), electrons cannot
propagate, whereas their surfaces are highly conducting. To get an
insight into the complicated theory of these exotic materials, let us
recall that electrons in an insulator fully occupy a certain number of
allowed energies (bands) in sucha way that the highest occupied state
is separated fromthe lowest emptyonebyagapof forbiddenenergies.
Hence, a non-zero energy is required to excite an electron across the
gap (that is, to make it move) and small perturbations have almost no
effect on the insulator. From this perspective, it is as good as vacuum:
nothing moves inside. It may seem that any two such insulators
(‘vacua’) should be indistinguishable, but it is not so! If we ask whether
one insulator can be smoothly deformed into another without
breaking certain symmetries or turning it into a metal along the way,
we find that it is not always possible. Insulators are divided into
qualitatively different categories, including trivial insulators (which are
much like vacuum) and topological insulators, characterized by a non-
zero integer topological index, related to the momentum-dependent
spin in spin–orbit-coupled materials such as occurs in HgTe/CdTe
quantum wells2 (preserving time-reversal symmetry) or from the
magnetic field in quantum Hall systems (breaking time-reversal
symmetry). Integers cannot change smoothly one into another, but
whenever we have a surface of a topological insulator—that is, a
boundary with a true vacuum—we do effectively enforce a transition
between the media characterized by different integers, say 1 and 0,
and the only way to cross between them is either to break symmetries
or to close the gap abruptly, that is to create a boundary metal. This is
why the topological boundary states are so robust: they are squeezed
in between the two vacua (the usual vacuum and the twisted one—the
topological insulator) and have nowhere to go.

Although superconductors are very different from insulators in their
electromagnetic properties, the characterizations of their excitation
spectra are closely related. A superconductor is a condensate of
electron pairs (Cooper pairs) behaving like a superfluid. Because it is
energetically favourable to form electron pairs in a superconductor, it
takes energy to break a pair to create single electrons, just as it takes
energy to move an electron across an energy gap in an insulator. So, a
superconductor is an insulator for its fermionic excitationsandassuch
can be characterized by topological integers with similar
consequences, includingboundarystates.But theboundary statesare
unusual at the edges of a topological superconductor, which get filled
by weird chargeless and spinless entities: linear combinations of an
electron and a hole (an absentee electron). Under certain
circumstances these can also become Majorana fermions (zero-
energy particles that are their own antiparticle) which were predicted
in spin–orbit-coupled systems and might have been observed there33.
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The problem of synthesizing Majorana fermions stands out as per-
haps the most active and exciting area of research combining both
profound fundamental physics and a potential for applications.
Indeed, Kitaev noticed that a Majorana fermion, being a linear com-
bination of a particle and a hole, should not couple much to external
sources of noise and as such should be protected from its debilitating
effects and decoherence31. Furthermore, when many such Majorana
entities are put together, they can form a non-Abelian network capable
of encoding and processing topological quantum information and may
be ideal for quantum computing applications32. Spin-orbit-coupled
superconductors in a magnetic field can host Majorana fermions33,
and creating such topological fermionic superfluids in spin–orbit-
coupled quantum gases appears to be within experimental reach, and
perhaps cold atoms may become the first experimental platform to
create and manipulate non-Abelian quantum matter.

Synthetic SOC in cold atomic gases
As we have seen, SOC links a particle’s spin to its momentum, and in
conventional systems it is a relativistic effect originating from electrons
moving through a material’s intrinsic electric field. This physical mecha-
nism for creating SOC—requiring electric fields at the level of trillions of
volts per metre for significant SOC—is extremely inaccessible in the
laboratory. Such fields exist inside atoms and materials, but not in
laboratories. Instead, we engineer SOC in systems of ultracold atoms,
using two-photon Raman transitions—each driven by a pair of laser
beams with wavelength l—that change the internal atomic ‘spin’.

Physically, this Raman process corresponds to the absorption of a
single photon from one laser beam and its stimulated re-emission
into the second. Each of these photons carries a tiny momentum with
magnitude pR 5 h/l called the photon recoil momentum (h is Planck’s

constant). Conservation of momentum implies that the atom must
acquire the difference of these two momenta (equal to 2pR for
counter-propagating laser beams). In most materials, the photon recoil
is negligibly small; indeed, in conventional condensed matter systems,
the ‘optical transitions’ are described as having no momentum change.
Ultracold atoms, however, are at such low temperatures that the
momentum of even a single optical photon is quite large. Thus, as first
put forward by Higbie and Stamper-Kurn34, Raman transitions can
provide the required velocity-dependent link between the spin and
momentum: because the Raman lasers resonantly couple the spin states
together when an atom is moving, its Doppler shift effectively tunes
the lasers away from resonance, altering the coupling in a velocity-
dependent way. Remarkably, nearly all SOC phenomena present in
solids can potentially be engineered with cold atoms (and some already
have), but in contrast to solids where SOC is an intrinsic material
property, synthetic SOC in cold atoms can be controlled at will.
Furthermore, unlike the common electron, laser-dressed atoms with
their pseudo-spins are not constrained by fundamental symmetries; this
leads to a remarkably broad array of ‘synthetically engineered’ physical
phenomena not encountered anywhere else in physics.

Figure 2 depicts the currently implemented technique for creating SOC
in ultracold atoms12,35–38. The first step, shown in Fig. 2a, is to select from
the many available internal atomic states a pair of states, which we will
associate with the pseudo-spin states :j i and ;j i that together comprise
the atomic ‘spin’. Two counterpropagating laser beams, which here
define the x axis, couple this selected pair of atomic states to the atoms’
motion along ex. Reminiscent of the case for Rashba SOC shown in
Fig. 1d, this coupling alters the atom’s energy–momentum dispersion,
although here only motion along the x direction is affected (Fig. 2c).
In the standard language, both Rashba and Dresselhaus SOC are
present, and have equal magnitude, giving the effective Zeeman shift
–m?B < 2sykx. In solids, this symmetric combination of the Rashba and
Dresselhaus coupling is called the ‘‘persistent spin-helix symmetry
point’’, where it on the one hand allows spin control via SOC, but on
the other minimizes the undesirable effect of spin memory loss30.

Given that the effect of SOCs on a single particle is equivalent to
that of a momentum-dependent Zeeman magnetic field, the particle’s
dispersion relation (for example, the familiar kinetic energy mv2/2 5 p2/
2m for a free particle) is split into two sub-bands corresponding to two
spin-split components, now behaving differently (measured in Fig. 2c).
For the linear SOC on which we focus, the band splitting simply shifts
the minimum of the dispersion relation by an amount depending on the
particle’s internal state and the laser coupling strength. This effect,
depicted in Fig. 2b, was first measured indirectly in ref. 12, where a
BEC was prepared in a mixture of :j i and ;j i in each of the two minima
of the dispersion, and the momentum of the two spins was measured
as a function of laser intensity. More recently, the full dispersion curve
was measured spectroscopically38, clearly revealing the spin–orbit-
coupled structure as a function of momentum (Fig. 2c).

A panoply of SOCs can be created, with additional lasers linking
together additional internal states. Figure 3 shows a realistic example
in which three internal atomic states can be coupled, producing a
tunable combination of Rashba and Dresselhaus SOC39. In these cases,
one of the three initial atomic states is shifted by a large energy, leaving
behind two pseudo-spins comprising a two-level system6. A further
extension can generate an exotic three-dimensional analogue either
to the Rashba SOC, which we call Weyl SOC, that cannot exist in
materials10, or to types of SOC with more than the usual two spin states9.

Many-body physics
An example of a unique quantum phenomenon made possible in ultra-
cold atomic systems is that of spin–orbit-coupled BECs. The main
ingredient of these exotic many-body states are laser-dressed bosons
with states :j i and ;j i that create a synthetic spin-half system.
Because the Pauli spin-statistics theorem prohibits the existence of
bosons with real spin-half, this is already a weird and interesting
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Figure 1 | Physical origin of SOC in conventional systems. a, Structural
inversion-symmetry breaking. In materials, SOC requires a broken spatial
symmetry. For example, the growth profile of two-dimensional GaAs electron
(or hole) systems can create an intrinsic electric field, thereby breaking
inversion symmetry. b, Model system in laboratory frame. The effective model
system consists of an electron confined in the ex–ey plane (in this example
moving along ex) in the presence of an electric field along ez. c, Model system in
electron’s frame. In the rest frame of the electron, the Lorentz-transformed
electric field generates a magnetic field along ey (yielding a Zeeman shift) that
depends linearly on the electron’s velocity. d, Dispersion of resulting Rashba
SOC. For such systems the SOC is linear, and the usual free-particle mv2/2 5 p2/
2m dispersion relation is altered in a spin-dependent way. In this case, pure
Rashba SOC shifts the free-particle dispersion relations for each spin state away
from zero (red and blue curves). The crossing point of these curves can be split
by an applied magnetic field (smoothly shaded curve).
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entity, but when many such entities are brought together in a spin–
orbit-coupled system, the weirdness increases further. As the temper-
ature is lowered, the bosons tend to condense, but in contrast to the
conventional BEC, where the zero-momentum state is the unique
state with lowest energy (the ground state is non-degenerate), spin–
orbit bosons can have energy-momentum dispersion with several
lowest-energy states (the ground state is degenerate). For example,
for Rashba and Dresselhaus SOC (Fig. 2c) there are two such minima;
for pure Rashba SOC there is a continuous ring of minima (Fig. 1d);
for the Weyl-type SOC there is a sphere of minima10. This is in
contrast with the more conventional case of spinor BECs, which include
two or more spin states, but do not alter the energy–momentum dis-
persion relation.

The bosons’ ‘indecisiveness’ about what state to condense into is
partially resolved by their interactions, which limits the states with low-
est energy. But unless the interactions break a ‘synthetic time-reversal’
(Kramers) symmetry, some degeneracy must remain, leading to the
possibility of exotic states. For example, repulsive bosons with a
non-equal combination of Rashba and Dresselhaus SOC are predicted
to condense into a strongly entangled many-body ‘‘cat’’ state, where the
whole condensate is simultaneously in a superposition of states with
equal and opposite momentum. Such many-body cat states have long
been sought in various experiments, but have never been convincingly
observed. The spin–orbit BECs, existing in a double-well ‘potential’ in
momentum space (for example, Fig. 1d) are promising in this regard

because robust arguments support the existence of many-body cat
states22: (1) the symmetry protection of the exact spin degeneracy from
splitting and (2) an argument based on the Heisenberg uncertainty
relation, which suggests that for the repulsive bosons to stay as far as
possible from each other in real space, they should be as close as possible
in dual momentum space. An experimental realization of such a many-
body cat state would be a major scientific development.

On the experimental front, there are already exciting developments,
which include the first realization of an Abelian SOC (corresponding to
the persistent spin helix symmetry point, where Rashba and Dresselhaus
SOCs are identical; see Box 2 for a discussion of the connection to
Abelian and non-Abelian gauge fields) and observation of a spin–
orbit-coupled BEC with rubidium atoms12,35,36. Exactly as expected,
the time-of-flight images of cold spin–orbit coupled bosons feature
two peaks that correspond to left- and right-moving condensates flying
apart in opposite directions. They however do not represent a cat state
(where all the atoms are either in the left-moving or all in the right-
moving condensate), but rather are either in a ‘striped’ state (where all of
the atoms are in the same state, which involves both positive and nega-
tive momenta), or in a phase-separated state of the right- and left-
moving condensates in the Abelian spin–orbit system12,40–42; see Fig. 2b.

Spin-orbit-coupled ultracold fermions are intriguing8: even the
behaviour of two interacting fermions is fundamentally altered with
the addition of SOC. Without SOC and in one spatial dimension, any
attraction between two fermions, no matter how weak, always gives
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typical spin–orbit dispersion relations depicted in Fig. 1d.
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rise to the formation of a molecule. In two dimensions, the resulting
molecular pairing is suppressed but not absent, with an exponentially
small binding energy, and in three dimensions there is a threshold
below-which there is no molecular state. However, in systems with
many fermions, many-body effects guarantee the formation of Cooper
pairs in any dimension, as long as attraction is present. The crossover
between a BEC of molecules to a Bardeen–Cooper–Schrieffer (BCS)
condensate of pairs is a smooth transition between physics described
in terms of simple ‘native’ molecules to the truly many-body physics of
Cooper pairs43,44. SOC provides a completely different avenue for
enhancing the pairing between two fermions. The ground-state of the
Rashba SOC Hamiltonian consists of a one-dimensional ring in
momentum and that of the Weyl SOC is a two-dimensional sphere.
This reduces the effective dimensionality and thereby strongly enhances
molecular pairing. This ensures that there is no threshold for molecular
formation in such spin–orbit systems and that the BEC–BCS crossover
is strongly modified10,45–47. The many-body physics of the BCS side is
greatly affected as well. The main difficulty in realizing topological
fermionic superfluids is the creation of the unconventional pairing
mechanism between the atoms48,49. Such topological pairing has proved
difficult to achieve using p-wave Feshbach resonances owing to debili-
tating effects of three-body losses50. SOC can create effective interactions
too: for example, in analogy to the d-wave interactions recently demon-
strated between colliding BECs51, stable p-wave interactions generated
by synthetic spin–orbit are expected and pave the way to atomic topo-
logical superfluids52–54. Experimentally, SOC in atomic Fermi systems
has been realized in two laboratories37,38, where the basic physical phe-
nomena at the single-particle level were confirmed.

Outlook
Spin–orbit-coupled cold atoms represent a fascinating and fast-
developing area of research significantly overlapping with traditional
condensed matter physics, but importantly containing completely new
phenomena not realizable anywhere else in nature. There is great poten-
tial for new experimental and theoretical understanding.

Spin–orbit-coupled BECs and degenerate Fermi gases have now been
realized in a handful of laboratories: the experimental study of these
systems is just beginning. The immediate outlook centres on imple-
menting the full range of SOCs that currently exist only in theoretical
proposals: so far only one form of SOC has been engineered in the
laboratory. To realize the true promise of these systems, a central experi-
mental task is to engineer SOCs that link spin to momentum in two and
three dimensions (non-Abelian, and without an analogue in material
systems). An unfortunate reality of light-induced gauge fields, as cur-
rently envisioned, is the presence of off-resonant light scattering—spon-
taneous emission—that leads to atom loss, heating of the quantum gas,
or both. In the alkali atoms, this heating cannot be fully mitigated by
selecting different laser parameters (such as wavelength): as a result, an
important direction of future research is finding schemes, or selecting
different atomic species, in which this problem is mitigated or absent.

Another goal of research using synthetic spin–orbit-coupled fermions
is to realize topological insulating states in optical lattices. A recent
breakthrough in condensed matter physics is the understanding that
the quantum Hall states represent only a small fraction of a zoo of
topological states. A complete classification of those has by now been
achieved for fermion systems in thermodynamic limit55,56. This leads to
fundamentally different classes of Hamiltonians. For example, no non-
trivial insulators exist in three dimensions if time-reversal invariance
is allowed to be broken, but the now-famous Z2 classification exists
otherwise57. There are nine symmetry classes in each spatial dimension,
although not all of them have been realized in solids.

In materials, the symmetries are usually ‘non-negotiable’ while in
‘synthetic’ spin–orbit systems, the symmetries and lack thereof can be
controlled at will, opening the possibility of creating and controlling
topological states, including topological phases that are not realizable
in solids. The ability to tune synthetic couplings suggests that a larger
class of non-Abelian gauge structures is within immediate experimental
reach. These structures do not have analogues, or even names in solid
state physics, but are most appropriately characterized as SU(3)-SOCs.
They can be created by focusing on a three-level manifold of dressed
states, as opposed to two-level manifold corresponding to spin-up and
spin-down states for the usual SOC. The general coupling of the three
internal dressed degrees of freedom to particle motion cannot be spanned
by three spin matrices, but requires 3 3 3 Gell–Mann matrices58,
which form generators of the SU(3) group that has been well studied
in the context of elementary particle physics. The algebraic structure,
geometry and topology of this complicated group are very different from
the familiar spin case, and these differences will have profound observ-
able manifestations.

A completely different way to create such topological matter is related
to the non-equilibrium physics of spin–orbit-coupled systems. It is easy
to experimentally engineer dynamic synthetic SOC and gauge fields
with a prescribed time dependence, providing the opportunity to realize
interesting dynamic structures, such as Floquet topological insulators59

and Floquet Majorana fermions60.
We expect that the most exciting physics in atomic SOC systems will

rely on interactions, and lie at the intersection of experiment and theory.
What is the physics of spin–orbit-coupled Mott insulators and the cor-
responding superfluid-to-insulator phase transition? What is the ground
state of the Rashba bosons, which were recently argued to undergo a
statistical transmutation into fermions? How is the BEC–BCS transition
altered by SOC? Each of these questions can only be answered in a
partnership between experiment and theory: the underlying physics is
so intricate that the correct answer is difficult to anticipate without direct
measurement, and the meaning of these measurements can be inexplic-
able without theoretical guidance.
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