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Fall 2011 

Problem ILl 

The goal of this problem is to find the wave functions for stationary eigenstates of a particle 
with mass m and energy E < VO in the one dimensional potential well shown below. It has 
infinite barriers at x = +a and -a. In the middle of the well, there is a barrier of height VO 
and width 2b between x = -b and x = b, centered at x = o. 

00	 00 

x-a 

(a)	 [5 points] The wave functions u(x) of the eigenstates may be assumed to be real and 
non-degenerate. Hence show that they will have definite parity, that is, u(x) is an even 
or an odd function of x. 

(b)	 [5 points] What are the boundary conditions that u(x) must satisfy at the boundaries 
x = 

t 
±a, and the continuity conditions at x = ±b? 

(c)	 [5 points] Answer the following questions separately for tile even and the odd case: 

Represent the wave function ue(x) (or uo(x)) by different functions in the two outer 
regions (Ixl > b) and the inner region (Ixl < b). Write the wave function in the outer 
region, x > b, that satisfies the boundary condition at x = a in terms of the wave 
vector k, which is related to the energy E by E = !i2k2 /(2m) , and a normalization 
constant A. (Parity then determines u(x) for x < -b.) 

Similarly for the inner region write the wave function in terms of /'i,2 = W(VO - E) and 
a normalization constant B. 

(d)	 [5 points] Use the continuity conditions at x = b to eliminate A and B, and obtain a 
relation between k and /'i, that could be solved for the energy E (but do not attempt 
to solve this transcendental equation). 

(e)	 [5 points] Consider the limit b ---+ 0, VO ---+ 00 in a manner such that 2bVO ---+ 0, where 
o is finite, and the energy E remains finite. There are still solutions of even parity 
and odd parity, but the limit becomes complicated for even parity solutions. Therefore 
find only the solutions for odd parity explicitly. Find the quantization condition for k, 
and the corresponding energy eigenvalues. 
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Problem II.2 

A simple model for electron states in an ordered solid crystal uses the Schr6dinger equation 
with a one-dimensional periodic potential V(x + a) = V(x). Th,e energy eigenfunctions in 
such a periodic potential can be written in the form 

u(x + a) = u(x),	 (1) 

where k is a quantum number called the quasi-momentum, and u(x) is a periodic function 
with the same period a as the potential V(x). (Eq. (1) is known as Bloch's theorem in 
physics and Floquet's theorem in mathematics.) Introducing the wavenumber q = 21f /a and 
expanding u(x) into a Fourier series, Eq. (1) can be rewritten as 

+00 
ikx inqx7/Jk(X) = e 2: ene , q = 21f/a,	 (2) 

n=-oo 

where en are Fourier coefficients with the integer index n. 
In this problem, we apply this general theory to the special case where the periodic 

potential is V(x) = 2W cos(qx) , so that the Schr6dinger equation is 

!i2 827/J (x) 
- 2ma;2 + 2W cos(qx) 7/Jk(X) = Ek7/Jk(X).	 (3) 

and m is the mass of the electron. 

(a) [4	 points] By substituting Eq. (2) into Eq. (3) and equating the coefficients in front 
of the exponential terms eikx+inqx for each n, obtain a recursive relation between the 
coefficients en with different n. 

The wavefunction (2) is completely characterized by the set of Crt, so 7/Jk(X) can be 
represented as a vector l7/Jh = (... ,C-2, C_l, Co, Cl, C2, . .. ). (To save space and simplify 
notation, we will write such vectors both as rows and columns.) Show that the recursive 
relation between the coefficients en can be written in matrix form as 

W 0 0 0 
fj2(k_q?W W 0 0 C_1 C-12m 

fj2k2 (4)=Ek0 W 2m W 0 Co Co 
fj2(k+q? C1 C10 0 W 2m W
 

0 0 0 W
 

(b) [4	 points] Now let us assume that W is small and can be treated using perturbation 
theory. First, let us use non-degenerate perturbation theory. The energy eigenvector 
17/J)k = 17/J)1°) + 17/J)11

) can be written as a sum of the unperturbed term 17/J)1°) and the 

first-order correction I7/J)11
) . The unperturbed term 17/J) 1°) has Co = 1 and Crt;6o = 0, 

i.e. 7/J1°) (x) = eikx . Using first-order non-degenerate perturbation theory in W, find 

the coefficients Crt in I7/J)11
) . Using these coefficients, write down the wavefunction 

7/Jk(X) = 7/J1°) (x) + 7/Ji1) (x) to the first order in W. 
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II. 2 (Continued) 

(c) [4 points] Now study the eigenenergy corrections Ek = E10) + Ell) + l;'J12) using non­

degenerate perturbation theory in W. Here the unperturbed term is E10) = fi2k2 /2m. 
Calculate the first- and the second-order correction terms Ell) and E12

). 

(d)	 [4 points] Observe that non-degenerate perturbation theory produces formally di­
vergent results when k -t ±q/2. What is the origin of this divergence? Plot the 
diagonal elements of the matrix (1) as a series of displaced parabolas vs. k. What is 
the significance of the intersection points between these parabolas? 

(e)	 [5 points] When k -t ±q/2, some diagonal elements in the matrix (1) become equal, 
so we must to use a degenerate perturbation theory instead of the non-degenerate one. 
Let us focus specifically on k -t q/2. In this case, we can truncate the infinite matrix 
(1) to a 2 x 2 matrix involving only the coefficients Co and C-I, because the other terms 
are non-degenerate: 

for k ~ q/2. (5) 

To simplify the equations, introduce the deviation ok = k-q/2 and expand the diagonal 
terms of the matrix (5) to the first order in ok. Then, diagonalize the matrix (5) and 
obtain two energy eigenvalues E;. Sketch the two energies as functions of ok. Does 
the difference E: - Ei: ("the energy gap") go to zero at some value of k, or does it 
remain non-zero? 

(f)	 [4 points] Now, qualitatively generalize your consideration to the other degenerate 
points of the matrix (1), i.e. the points where the displaced parabolas, representing the 
diagonal matrix elements, intersect. Qualitatively sketch the energy eigenvalues Ek vs. 
k by modifying your original sketch due to the effect of non-zero W. 

Briefly discuss the implications of your results for the electronic properties of solids. 
What is the difference in the electronic energy spectrum between metals and insulators? 
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Problem 11.3 

Consider a monoenergetic beam of neutrons of mass m and energy E moving in the x 
direction and normally incident on a block of ferromagnetic material. The material fills the 
entire x> 0 region and has a uniform internal magnetic field B of strength Bo in the positive 
z direction. The spin of the neutrons is s = 1/2, and their magnetic moment is "(S. The 
spin-independent part of the potential energy of the neutrons is represented by V(x) = 0 for 
x ~ 0 in vacuum and by V(x) = VO > 0 for x > 0 inside the material. 

(a)	 [2 points] Write the Hamiltonian for the neutrons inside the magnetized material and 
sketch the potential energy of the neutrons with spins up and down as a function of 
the coordinate x from -oc to +00. 

(b)	 [5 points] Show that the wave functions 7/J+(x) for the spin-up neutrons and 7/J-(x) 
for the spin-down neutrons satisfy the following equation for x > 0: 

where Wo = ,,(Bo· 

(c)	 [5 points] Write down the general solutions for the wave functions 7/J±(x) for both 
regions x < 0 and x > 0 for the special case where VO - 1li.J.Jo/2 < E < VO + muo/2. 
Indicate this position of E on your sketch made in Part (a). 

Hint: The problem is closely analogous to the case of a one-dimensional reflection from 
a potential step. 

(d) [10	 points] Using the continuity conditions at x = 0, solve for the ratio of constants 
needed in the general wave functions you wrote down in Part (c). Calculate the reflec­
tion coefficients 14. for neutrons with spins up and down in terms of m, E, VO, and 
Wo: 

where A± and B± represent the amplitudes of the incident and reflected plane waves 
in the neutron wave function. 

(e)	 [3 points] Suggest how the result from Part (d) couldcbe utilized in a neutron scattering 
experiment. 
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Problem 11.4 

Consider a molecule consisting of four identical atoms arranged in a ring (see Figure). We 
study the energy spectrum and the energy eigenfunctions of an electron in this molecule and 
the symmetry of these wavefunctions, ignoring the electron spin. 

1 

2	 4 

3 

Let us label the four atoms by the index j = 1,2,3,4, as shown in the Figure. Then 'l/Jj is 
the wavefunction of the electron on the atom j, and the electron state is described by the 
4-component vector I'I/J) = ('l/Jl,'l/J2,'l/J3,'l/J4)' (To save space and simplify notation, we will 
write such vectors both as rows and columns.) In the basis of the four atomic states, the 
Hamiltonian iI of the system can be written as a 4 x 4 matrix. Taking into account only 
the (real) matrix elements W of iI between the nearest neighboring atoms, as shown in the 
Figure, we obtain the following time-independent Schrodinger equation 

(1)
HI¢) ~ (i fif) (E) = E ( E)­

(a)	 [9 points] Show that the eigenfunctions of Eq. (1) can be taken as 'l/Jj = eijk , Le. 
I'l/Jh = (eik,ei2k,ei3k,ei4k), where k is a parameter, and i = J=T. Substitute I'l/Jh into 
Eq. (1) and show that the equation is satisfied when k is properly selected. Show that 
there are four permitted values of k and find their values kn and the corresponding 
eigenenergies En, where n = 1,2,3,4. 

Show that '17P)k does not change wlien we change k ~ -k +~271", ~o, Without loss' of 
generality, we can restrict kn to the interval (0,271") and label the values of kn in 
increasing order. 

Are there degeneracies among the eigenvalues En? 

(b)	 [8 points] Now let us also take into account the weaker matrix elements V of iI 
between the next-ne~est neighboring atoms, as shown by the dashed lines in the 
Figure. Write down H in that case and show that the Schrodinger equation becomes 

(2)
HI¢) ~ (f f! ~) (E) = E ( E)­
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11.4 (Continued) 

Show that the eigenvectors of Eq. (2) are the same vectors I'¢h with the same values 
kn and find the new eigenenergies En. 

Are there still degeneracies among the eigenvalues En? 

(c)	 [8 points] Now let us discuss the symmetries of the eigenfunctions. First, let us 
consider a cyclic permutation of the atoms, i.e. a translational shift along the ring: 
1 ---t 2, 2 ---t 3, 3 ---t 4, 4 ---t 1. In terms of the wavefunctions, the shift operator S is 
defined as S'¢j = ,¢j+I with the periodic boundary condition. 

Is the Hamiltonian H in Eqs. (1) and (2) iIJ.variant under the shift operation? Is 
it possible for a wavefunction I'¢h to be an eigenstate of both S and H operators 
simultaneously? 

Verify explicitly that the energy eigenstates I'¢h are also the eigenstates of the shift 
operator, i.e. SI'¢)k = (ei2k,ei3k,ei4k,eik) = Asl'¢)k for the permitted values kn , and 
find the eigenvalues AS. 

(d)	 [8 points] Now let us discuss invariance upon the time-reversal operation. Consider 
the time-dependent Schrodinger equation with a real Hamiltonian H = H* 

(3)
 

Suppose we reverse the time direction by changing t ---t -t in Eq. (3). Show that 
Eq. (3) can be restored to the original form if we simultaneously apply the complex 
conjugation operation and replace '¢ ---t '¢* . 

Relatedly, show that if'¢ is an eigenfunction of H'¢ = E'¢ for a real H, then '¢* is also 
an eigenfunction of Hwith the same eigenvalue E. 

i2k i3k ,eWrite the four eigenfunctions I'¢h = (eik, e ,e i4k ) explicitly for the permitted 
values kn and examine how these functions transform upon the complex conjugation 
operation j'¢)k. If I'¢h =/:- I,¢)k, then we conclude that there are two different eigen­
vectors for the same energy eigenvalue, i.e. the eigenenergy is degenerate. How many 
such cases are present in our problem? 

Show that by making linear combinations of the degenerate eigenstates, I'¢h + I'¢)k 
and il'¢)k - il'¢)k' it is possible to make all eigefunctions real. However, these en­
ergy eigefunctions will not be eigenstates of the shift operator. Construct such real 
eigenfunctions for our problem. 
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Problem 11.5 

Half ofthe Nobel Prize in Physics in 2005 was awarded to Roy J. Glauber for his contributions 
to the quantum theory of optical coherence and for his role in the discovery of coherent states 
of the electromagnetic radiation field. 

Quantized electromagnetic radiation can be described using the harmonic oscillator Hamil­
tonian iI = nw(a+a+!), which is defined in tenns of the energy quantum nw and the creation 
and annihilation operators a+ and a. The energy eigenstates are the eigenstates In) of the 
number operator n= a+a, which are interpreted as the states with n photons. . 

(a)	 [6 points] Glauber studied the coherent states, which are the eigenstates Iv) of the 
annihilation operator awith complex eigenvalues v: 

alv)	 = vlv). (1) 

The coherent states (1) can be expanded in terms of the complete orthonormal set of 
the number states as 

00 

Iv)	 .:... Lenin). (2) 
n=Q 

Substituting Eq. (2) into Eq. (1) and using the formula aln) == ..;n In - 1), derive a 
recursion relation between the coefficients en. Solve this recursion relation and find en 
up to an overall normalization constant. 

(b)	 [5 points] From the appropriate normalization condition for Iv), show that overall 
normalization can be achieved by setting Co = exp(-lvI 2/2). 

Hint: Recall the ':I'aylor expansion for eX. 

(c)	 [6 points] Calculate the probability P(n) = l(nlv)1 2 of finding n photons in the co­
herent state Iv) and show that it is given by a Poisson distribution. 

(d)	 [3 points] Determine the mean number of photons (n) in the coherent state Iv). 

(e)	 [3 points] Detennine the variance I::1n2 = (n2) - (n)2 (or equivalently the photon 
number uncertainty I::1n = viI::1n2) of the coherent state Iv). 

(f)	 [2 points] Are coherent states with different v and v' orthogonal? To answer this 
question examine the scalar product (vlv'). 
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