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Do any four problems.   
 
Problems   I. 1,   I. 2,   I. 4   and   I. 5  are each worth 25 points. 

   
Problem   I. 3   Statistical Mechanics is worth 40 points. 

 
Put all answers on your answer sheets. 

 
Be sure your Qualifier ID Number is at the top right corner of each  
sheet and turn in solutions to four problems only.  If five solutions  
are turned in we will grade # 1 - # 4.     

 
 
 
 
 
 



Problem I.1

Consider a system consisting of three particles of masses m1 = m, m2 = M , and m3 = m.
At the start, m1 moves with velocity v0, collides with the spring extending on the left side
of m2, and sticks to it, thus creating a system of three masses connected by two massless
springs of force constant k and equal lengths.
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All questions below refer to the system after the collision.

(a) [3 points] Write down the Lagrangian of the system.

(b) [3 points] Write down the Lagrange equations of motion.

(c) [8 points] Determine the eigenfrequencies and eigenvectors (normal modes) of the
system. Discuss symmetry of the normal modes.

(d) [4 points] What is the center-of-mass velocity of the system?

What is the maximal displacement of the mass m2 away from the center of mass during
the subsequent motion of the system after the collision?

(e) [7 points] Calculate the energies allocated to each of the three normal modes after
the collision. Verify that their sum is equal to the initial kinetic energy.
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Problem I.2

The electric current density J in a superconductor can be expressed in terms of a complex
order parameter Ψ and the vector potential A:

J = − iq~
2m

(Ψ∗∇Ψ−Ψ∇Ψ∗)− nq2

m
A, Ψ =

√
n eiΦ. (1)

Here m is the mass of a Cooper pair (two electrons), q = 2e is the charge of the Cooper pair,
n is the density of Cooper pairs, and the phase Φ is real. For simplicity, assume that n is
constant inside the superconductor.

(a) [6 points] In order for Eq. (1) for J to be gauge-invariant, how should the phase Φ
and the vector potential A change upon a gauge transformation?

(b) [6 points] Using Ampère’s law and Eq. (1), show that a static, time-independent mag-
netic field decreases exponentially inside a superconductor over the London penetration
depth:

λ =

√
m

nq2µ0

. (2)

(c) [7 points] Using Eq. (1) for J and Maxwell’s equations with zero charge density, derive
a wave equation for the magnetic field B(r, t) inside a superconductor. Show all your
work and don’t leave any steps out. You should obtain

∇2B − 1

c2

∂2B

∂t2
=

1

λ2
B. (3)

(d) [6 points] Consider a plane-wave solution for Eq. (3)

B(r, t) = B0 e
ik·r−iωt. (4)

(i) Calculate a threshold frequency ωp for a propagating wave to exist, so that the wave
propagates for ω > ωp and exponentially decays as a function of r for ω < ωp.

(ii) Find the dispersion relation ω(k) for ω > ωp and show that it is consistent with the
notion that photons in a superconductor have a relativistic energy-momentum relation
E(p) with a mass mγ = ~/λc.

Maxwell’s equations in the absence of charge density in the SI system of units:

∇ ·B = 0, ∇ ·E = 0, ∇×B = µ0J +
1

c2

∂E

∂t
, ∇×E = −∂B

∂t
.

A useful identity for any vector field V (r):

∇× (∇× V ) = ∇ (∇ · V )−∇2V
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Problem I.3

The van der Waals model goes beyond the ideal gas and introduces a repulsive volume ex-
clusion and a short-range attraction to account for interactions between atoms or molecules.
A variant of this model (proposed by Dieterici) has the equation of state

P (V − b) = RT exp
(
− a

RTV

)
, (1)

written here for one mole of a substance. The figure on the next page shows a family of
isotherms for this equation. Temperature increases from the bottom to the top curve.

(a) [8 points] As shown in the figure, the isothermal compressibility κT = − 1
V

(
∂V
∂P

)
T

is
always positive at high temperatures, but there is a range of volumes where κT < 0 at
low temperatures.
(i) Is the system stable or unstable when κT < 0? Explain why.
(ii) On the figure, connect the points where κT = ∞ by a dashed curve, which gives
the boundary between the regions with κT < 0 and κT > 0.

(b) [12 points] The top point of the dashed curve is the critical point, whose coordinates
are (Vc, Pc) on the critical isotherm (having T = Tc).
(i) Write the two equations [involving the appropriate derivatives of P (V )] that deter-
mine the critical point.
(ii) These two equations can be solved for Vc and Tc; however, to save algebra, you
may take Vc = 2b and find Tc from one equation and verify that this pair of values (Vc
and Tc) also satsfies the second equation. Then find Pc for the Dieterici equation of
state (1).

(c) [4 points] Find the ratio PcVc/RTc for the Dieterici equation of state and evaluate it on
a calculator. For the van der Waals equation of state, this dimensionless combination
is 3/8. Which result is closer to the experimental value 0.29 for noble gases?

(d) [16 points] Go back to the figure on the next page.

(i) On the isotherm shown by the thick curve on the graph, perform a Maxwell con-
struction and mark the volumes V1 and V2 corresponding to the liquid and gas phases
that coexist at this temperature. Explain how the Maxwell construction is performed
and compare the pressures P (V1) and P (V2).

(ii) Suppose the substance is sealed in a container of volume V and has a temperature
T such that V1(T ) < V < V2(T ). A) What fraction xG of the molecules separates
into the gas phase? B) What is the pressure in the container: P (V1), P (V ), or P (V2),
where the function P vs. V is given by Eq. (1)?

(iii) Sketch a solid curve on the graph indicating the boundary of the region where
two-phase liquid-gas coexistence occurs.

(iv) Describe qualitatively what happens in the region between the solid and dashed
curves that you have drawn.

Tear out the next page with the graph and submit it with your solution of this problem.
Be sure to write your control number on that page.
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Figure 1: Caption does not work, because of too-big bounding box in the figure file.
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Problem I.4

Although dark matter is believed to constitute about 80% of the matter in the universe,
the nature of its constituent particles remains unknown. One interesting possibility is that
dark matter is composed of ‘dark atoms’ that have a ground state and one (or more) excited
states. The mass of the excited atom exceeds that of the ground state atom by a small
amount ∆. You will investigate whether a collision experiment with visible matter can
distinguish between dark atoms and more conventional dark matter that does not possess
any excitable internal degrees of freedom.
Consider a dark atom in its ground state of rest mass m that collides with a nucleus of rest
mass M at rest. The relativistic energy of the incident dark atom is E and the magnitude of
its momentum is p. You may put c = 1. Write all answers in terms of these given quantities
M, m, E, p, or quantities (such as β) that you have defined in terms of the given quantities.
If you find the algebra too complicated you may assume m = M and/or ∆� m in the later
parts.

(a) [5 points] Find the speed β = v/c of the center of momentum of the two particles
(dark atom and ordinary nucleus) and obtain an expression for the magnitude of the
momenta and for the energies of the incident dark atom and nucleus in the center of
momentum frame.

(b) [7 points] Consider first elastic scattering, so that the dark atom remains in its ground
state. Obtain an expression for the kinetic energy of the recoiling nucleus in the lab
frame as a function of some scattering angle θ you define.

(c) [3 points] What are the largest and smallest possible values of the relativistic energy
of the recoiling nucleus in the lab frame, as θ is varied?

(d) [7 points] Next consider inelastic scattering, when the rest mass of the dark atom
after collision is m+ ∆. What is the smallest (‘threshold’) value Ethr for E such that
inelastic scattering into this excited state is kinematically allowed?
Hint: what is the relative velocity between the masses m+∆ and M after the collision?

(e) [2 points] Find the kinetic energy K = Erec. nucl. −M of the recoil nucleus after the
theshold scattering.

(f) [1 point] Assume a broad spectrum of incident dark matter energies that extends well
beyond Ethr. Also assume that the inelastic scattering of dark atoms peaks near the
threshold values you found in (d) and (e). Conventional dark matter, on the other
hand, always scatters elastically, since it possesses no excited states. In view of what
you found in (c) about the minimum elastically scattered recoil energy, how might you
infer from the nuclear recoil spectrum that dark matter is composed of dark atoms
rather than of conventional dark matter?
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Problem I.5
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p pp-�dTwo optically transparent materials are separated by a planar thin

film of thickness d, which is shown in the Figure as the dotted region
extending perpendicular to the page. The film is a metal of high
electric conductivity σ. The materials on the left and right sides
have the indices of refraction n1 and n2, respectively.

Consider a linearly-polarized electromagnetic plane wave of fre-
quency ω that is normally incident on the interface from the left.
Assume that the film thickness d is much less than the wavelength
of light and the penetration depth of the metal. In Gaussian units,
take the conductivity to be large compared to the frequency, σ � ω.

(a) [10 points] In the conducting film, the current density J is given by Ohm’s law,
J = σE, where E is the electric field. In the optically transparent materials, the
magnetic field H is approximately equal to the magnetic induction B.

Using these relations and integrating Faraday’s and Ampère’s laws along the closed
path shown by the dashed line in the Figure (or one rotated by 90◦), prove that the
boundary conditions relating the tangential components of the electric and magnetic
fields at the interface are

E1 = E2, B1 = B2 + κE2, κ =
4πσd

c
.

Direction: Take the limit d→ 0, while keeping σd and κ finite.

(b) [10 points] Using the above boundary conditions and the relations B = nE in the
transparent materials, calculate the intensity reflection coefficient from the interface in
terms of n1, n2, and κ.

(c) [5 points] What are the conditions for the metallic film to act as an anti-reflecting
coating?

Faraday’s and Ampère’s laws in the Gaussian units are

∇×E = −1

c

∂B

∂t
, ∇×H =

4π

c
J +

1

c

∂D

∂t
.
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