Patrick Kim Named Goldwater Scholar

Patrick Kim, a junior physics and electrical engineering double-degree student, is one of three UMD students to have been awarded 2022 scholarships by the Barry Goldwater Scholarship and Excellence in Education Foundation, which encourages students to pursue advanced study and research careers in the sciences, engineering and mathematics.  Patrick Kim. Photo courtesy of same.Patrick Kim. Photo courtesy of same.

Over the last decade, UMD’s nominations yielded 35 scholarships—the second-most in the nation behind Stanford University. The Goldwater Foundation has honored 76 UMD winners and five honorable mentions since the program’s first award was given in 1989. In the last decade, 15 physics students have received Goldwater recognition: Kim, Ela Rockafellow, Scott Moroch, John Martyn, Nicholas Poniatowski, Mark Zic, Paul Neves, Christopher Bambic, Eliot Fenton, Prayaag Venkat, Nathan Ng, Geoffrey Ji, Stephen Randall and Noah Roth Mandell. 

“Our Goldwater Scholars are conducting research on the leading edge of their disciplines—engineering new clean energy solutions, using algorithms to optimize the distribution of limited resources in contact tracing or access to vaccines, and designing new gene-based diagnostics and therapies against aggressive cancers. Each of them is on a trajectory to make major research contributions that have societal impact,” said Robert Infantino, associate dean of undergraduate education in the College of Computer, Mathematical, and Natural Sciences. Infantino has led UMD’s Goldwater Scholarship nominating process since 2001.

Kim, a member of the University Honors program and President’s Scholarship recipient, is contributing to the quest for fusion energy—a process that forces atoms together under great heat and could mean an almost limitless supply of clean energy if successful. 

Kim began his first research project at UMD with Physics Professor William Dorland in 2017—two years before he became a college freshman. Now, Kim is working with Dorland to optimize fusion reactors to reduce their turbulent transport, which would otherwise greatly limit their efficiency and prevent net fusion power gain.

“Patrick is bright, resourceful, tenacious and curious,” Dorland said. “He is able to teach himself fast enough and thoroughly enough to have produced new results, which he published in a refereed journal and presented at the annual American Physical Society conference for the Division of Plasma Physics.”

Kim also conducts research at the Princeton Plasma Physics Laboratory (PPPL), where he studies reduced plasma models that can evaluate the plasma’s nonlinear macroscopic stability and dynamical properties more rapidly. He is co-author of a journal article submitted on this work. This summer, he plans to continue working at PPPL to develop improved optimization algorithms for fusion reactors.

After graduation, Kim plans to pursue a Ph.D., become a plasma physicist and help develop the first commercial nuclear fusion reactors that provide power to the electrical grid.

Other UMD winners this year were George Li, a sophomore computer science and mathematics double-degree student; and Kevin Tu, a junior biological sciences and economics double-degree student.  Goldwater Scholars receive one- or two-year scholarships that cover the cost of tuition, fees, books and room and board up to $7,500 per year.

 

In Memoriam

It is with much sadness that the Department of Physics announces the passing of several members of our community. 

  • Gerald Abrams (Ph.D., '67), who spent most of his career at Lawrence Berkeley National Laboratory, died on March 31, 2020.
  • Nick Chant, who researched nuclear physics and served as the department's graduate director, died on October 15, 2021.
  • Thomas Ferbel, a high energy physicist who held UMD appointments since 2013, died on March 13, 2022
  • Lavonne Dragt, wife of Prof. Emeritus Alex Dragt, died on November 12, 2021.
  • Charles S. Dulcey Jr (Ph.D., 1982), who worked as a research physicist at the Naval Research Laboratory, died on Dec. 30, 2021
  • Michael Fisher, whose many honors included a USM Regents Professorship, died on November 26, 2021.

Faculty, Staff, Student and Alumni Awards & Notes

We proudly recognize members of our community who recently garnered major honors, began new positions and more.

Faculty and Staff 
  • Ruba Abukhdeir joined the department as the Director of Business and Finance. 
  • Kaustubh Agashe, Mohammad Hafezi and Arpita Upadhyaya were elected Fellows of the American Physical Society.
  • Jesse Anderson retired on December 31 after 34 years with the department. 
  • Lea Bartolome received the department's Staff Excellence Award. 
  • Alessandra Buonanno received the Balzan Prize.
  • Sankar Das Sarma was named a highly cited researcher by Clarivate Analytics. He also wrote a commentary for Physics Today. He recently discussed the latest developments in topological phases in quantum computing at a Microsoft conference. 
  • Work by Jim Drake on the heliosphere was described in Phys.org.
  • James Ellsworth joined the department as assistant director for of procurement, inventory and receiving.
  • Sarah Eno was elected a Fellow of the American Association for the Advancement of Science. 
  • Manuel Franco Sevilla was named liaison between EF and Rare Processes and Precision Measurement group at Snowmass.
  • Victor Galitski was quoated in Physics magazine.  
  • Jim Gates received the 2021 AIP Andrew Gemant Award. He was also profiled in Symmetry Magazine.
  • Carter Hall was featured on the Department of Energy website regarding what his 2011 Early Career Award had meant to his research.
  • Donna Hammer was named a Society of Physics Students Outstanding Chapter Advisor. 
  • Eliot Hammer joined the chair's office as coordinator of administration.
  • Work by Anson Hook was described in Science Daily.
  • Ted Jacobson's idea of a black hole laser was discussed in PhysicsWorld.
  • Danae Johnson joined the department as a business manager.
  • Melanie Knouse received the department's Staff Excellence Award. 
  • Alicia Kollár received a Sloan Research Fellowship.
  • Wolfgang Losert received a Brain and Behavior Institute seed grant award.
  • Howard Milchberg, Daniel Woodbury (Ph.D., '20), Robert Schwartz wrote a Physics Today Quick Study showing how revisiting early experiments with new tech leads to pinpointing individual electrons in ambient gases. 
  • Rabi Mohapatra will retire on August 1, 2022.
  • Allen Monroe received the department's Staff Excellence Award. 
  • Johnpierre Paglione was named an Outstanding Referee of the Physical Review journals.
  • Naomi Russo received the department's Sibylle Sampson Award.
  • Jay Sau was named UMD co-Director of the Joint Quantum Institute.
  • Yasser Saleh joined the department as procurement coordinator.
  • Brian Straughn received the Lorraine DeSalvo Chair's Award for Outstanding Service.
  • Fred Wellstood will retire on April 1, 2022.
  • LaVita Williams joined the payroll office as a business service specialist.
 Students
  • Elizabeth Bennewitz, a graduate student working with Alexey Gorshkov, has been named a finalist for a 2022 Hertz Fellowship.
  • Yonatan Gazit and Yanda Geng received the Richard and Anna Iskraut Award.
  • Donovan Buterakos, Haining Pan, DinhDuy Vu won the Richard E. Prange Graduate Student Award.
  • Sagar Airen received the Kapo-Barwick Award.
  • Batoul Banihashemi, Yan Li, Braden Kronheim, Edward Broadberry, Jeremy Shuler, Subhayan Sahu, Saurabh Kadam, Nathaniel Fried received the Ralph Myers Award
Alumni
  • Vakhtang Agayan (Ph.D., '00) was named Chief Technology Officer of KMK Consulting
  • Beatriz Burrola Gabilondo (Ph.D., '10) was named an APS Equity, Diversion and Inclusion Fellow.
  • Laird Egan, (Ph.D., '21), was quoted in a Physics story on quantum error correction. 
  • Alexei Fedotov (Ph.D. ’97), received teh Dieter Möhl Medal in the field of beam cooling.
  • Salman Habib, Director at Argonne Lab's high energy division was a PhD student of mine (1988).
  • Ruth Kastner received a  Visiting Fellowship at the University of Pittsburgh's Center for Philosophy of Science.
  • Ying-Cheng Lai (Ph.D., '92) was named a Regents Professor at Arizona State University.
  • Thomas Mason, B.S. '89, physics; B.S. '89, electrical engineering  https://www.chemistry.ucla.edu/news/mason-group-research-featured-science-advances  
  • Elizabeth Paul (Ph.D., '20) and Matt Landreman published work on a twisty stellarator in Physical Review Letters.
  • Denjoe O'Connor (Ph.D. '85) is now the Director of Dublin Institute for Advanced Studies, the position Erwin Schrödinger held during World War II.
  • TC Shen (Ph.D. '85) is a professor of physics at Utah State University.
  • Chris Stephens (Ph.D. '86) is the director of the Center for Complexity Science at UNAM, Mexico City.
Book Marks

Victor Yakovenko's work in econophysics was discussed extensively in the book Anthill Economics.

Department Notes 
 
 
 

Nicole Yunger Halpern Ponders Quantum Mechanics, Thermodynamics, and Everything Else

There is a well-known saying, of disputed origin(link is external), that dissuades students and even working physicists from thinking too deeply about the meaning behind quantum physics. “Shut up and calculate,” it goes. Nicole Yunger Halpern, an affiliate of JQI and the newest Fellow of the Joint Center for Quantum Information and Computer Science (QuICS), was never one to abide by this mantra.

Instead, Yunger Halpern, who is also a physicist at the National Institute of Standards and Technology, brings a vast intellectual curiosity to physics, from tackling abstract theory to collaborating with experimentalists, all the while drawing distinct connections between diverse disciplines of physics. She also brings her research to life through writing, imbuing it with historical, philosophical, and even artistic context.Photo by John T. Consoli/University of MarylandPhoto by John T. Consoli/University of Maryland

Her self-titled research direction—at the intersection of quantum information theory and thermodynamics—is “quantum steampunk,” after the steampunk genre of literature, art and film that envisions a 19th century world where steam engines power futuristic gadgets, like flying boats and robots. Her book(link is external) of the same title is scheduled for publication in the spring of 2022. She will discuss it at the physics colloquium on Tues., March 29 at 4 p.m. in room 1412 of the John S. Toll Physics Building. 

Thermodynamics, developed largely in the 19th century, is the “steam” in Yunger Halpern’s research, merging with the futuristic science non-fiction that is quantum mechanics. Quantum thermodynamics explores how quantum mechanics can impact and enhance thermodynamic problems, such as channeling energy and heat to perform work, and it raises new questions about information transfer in the process. “What steampunk fans dream,” Yunger Halpern writes in her Ph.D. thesis(link is external), “quantum-information thermodynamicists live.”

On top of helping bridge the 19th and 21st centuries, Yunger Halpern brings the tools of quantum information thermodynamics to other disciplines. Her work on quantum scrambling(link is external) is relevant to black hole physics; her thermodynamic theories(link is external) straddle physics and chemistry; experimental realizations of her proposals have brought collaborations with condensed matter(link is external) and atomic, molecular and optical physicists(link is external); her studies of quantum mechanics have touched on information theory(link is external); her work on thermodynamics ventures into machine learning(link is external); and she’s even proposed an idea for quantum voting(link is external).

Yunger Halpern’s voracious appetite for ideas from diverse disciplines dates to her childhood in Florida. “I grew up reading basically all the time,” she recalls. “I would read while waiting for my parents to pick me up from school; while standing in line; and while in restaurants, waiting for food to arrive. I was interested in everything.”

As early as high school, thermodynamics caught Yunger Halpern’s eye. She remembers learning about entropy, a measure of disorder in a collection of particles, in a biology class. The second law of thermodynamics states that entropy, once it increases, can never go back down—a familiar concept to anyone who’s ever tried to stuff toothpaste back into the tube or unscramble an egg.

Some physicists believe that this irreversibility is what gives time its forward direction. “I’m fascinated by entropy,” Yunger Halpern says, “because it’s this abstract concept, quantified with a funny-looking function, but it has such important real-life implications.”

Yet, despite the early fascination with entropy and a high school physics class she loved, Yunger Halpern was still not willing to put on academic blinders after enrolling at Dartmouth College. “Two physics professors helped me design a major that enabled me to view physics from many perspectives,” she explains. “It was partway between the standard physics major and the create-your-own major.” The bespoke major included conventional physics courses combined with some math, philosophy and history.

It was a history of science class in her final term at Dartmouth that further pushed Yunger Halpern to make physics her primary focus, and to pursue graduate school. She was the only student in the class with a scientific background, and she noticed this gave her a different perspective on the course. “I couldn’t help noticing that I understood these topics more deeply than my classmates,” she says, “and I realized that I wouldn’t have been satisfied if I’d learned the material strictly at the level required for the history course.”

Similarly, she realized, she wouldn’t be satisfied if she refrained from studying a host of other topics—cosmology, field theory, etc.—at the level required of a physics student. “So, I was determined to remain a physics student—to study physics more deeply,” she says.

After completing her degree at Dartmouth, Yunger Halpern continued to follow a somewhat unconventional path. She spent a year as a research assistant at Lancaster University in England, followed by a one-year master’s program at the Perimeter Institute for Theoretical Physics in Waterloo, Canada. After starting a Ph.D. program at Caltech, she spent another semester as a visiting graduate student in Oxford, England.

It was during her master’s studies that Yunger Halpern had her first taste of combining quantum information theory with thermodynamics, under the guidance of then-postdoc Markus P. Müller and faculty member Robert Spekkens. They made use of quantum resource theories—a set of mathematical tools that look at quantum objects as resources that can be spent to accomplish a task—as a framework for thermodynamics(link is external).

Yunger Halpern reveled in the interdisciplinary nature of the work, as well as its real-world relevance. “That project was exactly the springboard that I’d sought to embark on research in quantum information theory and thermodynamics,” she says.

This set the course for her quantum steampunk career.

Propelled forward by her deepening passion, Yunger Halpern attended graduate school at Caltech under the mentorship of John Preskill, a giant in the field of quantum information science. “At the time, I was interested in a very theoretical, abstract flavor of quantum thermodynamics,” she explains. “Very few researchers in the United States supported it. But I told John what I wanted to do, and he said, ‘Ok. Do it.’ I felt that I’d have the freedom and support to undertake the research that I felt drawn to.”

This freedom brought her to a key insight(link is external) at the intersection of two seemingly disparate questions—how much work you have to do to push a collection of particles into a different configuration (like squeezing toothpaste into a travel-sized tube) and what happens when information is thrown into a black hole. Simply put, both processes depend crucially on the direction of time, like the toothpaste that won’t go back in the tube. Noticing this connection allowed Yunger Halpern to derive an equation relating quantum scrambling—the thing black holes are thought to do with information—to something that could be measured in the lab. Experiments realizing a simpler version of Yunger Halpern’s protocol were carried out(link is external), not inside a black hole, but in the lab of Kater Murch at Washington University in St. Louis.

Next, Yunger Halpern and her collaborators designed a truly steampunk invention(link is external): an analog of a steam engine that relies on an exotic quantum phase. This phase’s superpower is that it thermalizes very slowly or not at all, akin to an ice cube that stays cold on a warm summer day. It’s a collection of quantum particles that are kept in a box with a jagged and disorderly floor, creating a randomness that prevents the particles from freely bumping into each other and exchanging energy in a phenomenon known as many-body localization (MBL).

Drawing on ideas from her research at Perimeter, Yunger Halpern, with her collaborators, realized that a state that does not thermalize could be used as a resource. The engine, which they called ‘MBL-mobile’, is a four-stroke cycle that takes a collection of quantum particles in and out of the MBL phase to extract work.

At the beginning of her graduate career, alongside her research, Yunger Halpern committed to writing a blog post every month for Caltech’s blog Quantum Frontiers(link is external). This is a habit she’s kept to this day, having recently published her 100th post(link is external).

Through the blog, she’s managed to continue cultivating her lifelong love of writing. “I was writing stories as early as second grade,” she says. “The best physicists I’ve met explain their science in terms of stories colored by a few simple, basic equations, so writing stories about my physics regularly feels natural.”

Yunger Halpern’s blog posts touch on literature, history and anthropology from all over the world, drawing analogies and placing her work as a scientist into a larger context. “It provides a useful creative outlet,” she says. “Physicists value creativity, but there are some things that even we aren’t allowed to write in papers. I can write those things on the blog, which keeps my imagination in high gear and so enhances my physics.”

After Yunger Halpern moved on to a postdoctoral position at Harvard University, her writing landed her a feature story in Scientific American(link is external). Now, her new book, “Quantum Steampunk: The Physics of Yesterday’s Tomorrow,”(link is external) is about to hit bookstores nationwide. “The book is almost entirely nonfiction,” she says, “but each chapter begins with a snippet from an imaginary quantum-steampunk novel. I also worked with my editors and illustrator to bring out the steampunk aesthetic of quantum thermodynamics—not only in the explanations, but also in the figures and even in the fonts.”

Photo by John T. Consoli/University of MarylandPhoto by John T. Consoli/University of MarylandAt the University of Maryland, Yunger Halpern looks forward to forging new collaborations with senior researchers as well as training young scientists. “The people at Maryland—the colossal quantum and statistical-mechanics communities—certainly drew me. I have worked with Chris Jarzynski, who’s a wonderful scientist and a wonderful person, and I’ve visited the College Park campus several times over the years because I simply couldn't stay away from the research.”

She is also drawn to Maryland’s interdisciplinary structure, believing it will feed her insatiable drive to connect scientific disciplines. “I’m looking forward to making even more new connections,” she says.

Original story by Dina Genkina: https://jqi.umd.edu/news/nicole-yunger-halpern-ponders-quantum-mechanics-thermodynamics-and-everything-else

Alicia Kollár Bridges Abstract Math with Realities of the Lab

Eugene Wigner, a Nobel Prize-winning mathematical physicist, once said, “The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve.”

Indeed, mathematics may seem abstract or even irrelevant until it’s used to describe the natural world around us. The reverse is occasionally also true: Physical realities, when brought to a mathematician’s attention, can inspire new questions and new discoveries. 

The research of Alicia Kollár, a Chesapeake Assistant Professor of Physics at the University of Maryland and a Fellow of the Joint Quantum Institute, embodies the give and take of this relationship between physics and mathematics. In her lab, she brings abstract theories to life and in turn collaborates on new theorems. She has forged a research program of manipulating light on a chip, coaxing the light into behaving as though it lives on the surface of a sphere, or a mathematical abstraction known as a hyperbolic surface. She also collaborates with mathematicians, furthering both the understanding of what these chips can do and their underlying mathematics. 

Alicia KollárAlicia KollárA direct collaboration with pure mathematicians is uncommon for a physicist, particularly an experimentalist. But Kollár is no stranger to mathematics. Raised by two mathematicians in Princeton, New Jersey, she was exposed to the discipline early on. However, Kollár said her parents didn’t pressure her to pursue mathematics growing up. 

“It never crossed my dad’s mind to try to force me to do what he loved,” Kollár said. “He considered that pointless, like ‘You should go into research for you, not for somebody else’s expectations.’” 

Her father, János Kollár, a professor of mathematics at Princeton, had a slightly different take. 

“She was always interested in science, so I didn’t need to apply any influence,” he said. “If she was only interested in rock music it might have been different.”

Free to pursue whatever she pleased (short of rock music), Kollár studied advanced math, but without much enthusiasm. 

“I was fortunate to be able to take quite a bit of college-level pure math as a high schooler,” she said. “And I would say that I think I was good at it, but I didn’t love it. I just kind of didn’t care.” 

What really caught Kollár’s attention was physics. Her high school physics teacher’s style really resonated with her. 

“He was a crusty old dude that loved Far Side cartoons,” she recalled. “And he wouldn’t put up with anybody that was too cool for school. He taught non-calculus physics, but he taught that you have to think about it—not ‘Here’s a method learn how to do it.’ We became really good friends, and I really liked thinking about how it works, you know, the physical intuition part of physics.”

She attended college at Princeton University, remaining in her hometown and further developing her fascination with physics. 

“I was sort of divided between math and physics as a freshman,” Kollár said. “But the more physics I took, I never looked back.”

During her first summer research experience, she was charged with taking apart a telescope mount for a cosmology group. That’s when she found her calling as an experimentalist.  

“I had a lot of fun that summer,” she said, smiling. “I ended up building a 1500-pound steel support structure. I was up to my eyeballs in machine oil and loving every minute of it.”

When applying to graduate schools, Kollár’s soon-to-be Ph.D. adviser Benjamin Lev, now an associate professor of physics and applied physics at Standford University, called her and convinced her to join his lab. He enticed her with the promise that, as an atomic and optical physicist, she could do both theory and experiment side by side. She joined his group at the University of Illinois at Urbana-Champaign, and, in her first year, moved with the whole team to Stanford.

Kollár’s Ph.D. work consisted of building a novel experimental apparatus from scratch, designed to trap atoms and photons together and allow them to influence each other in significant, controllable ways. The resulting experimental setup launched a new direction in its field, according to Lev. 

“From beginning to end, it was just an amazing graduate school experience, where you see something from the inception of the idea to actually showing that this new experimental technique can work,” Lev said. “And she was always a thought partner. We were thinking through the ideas, writing the equations on the board, working with theorists, and she was an equal thought partner on all of that.”

After graduate school, Kollár found herself returning to Princeton. “Princeton is a black hole,” she said. “You can never quite leave. Maybe it’s the Hotel California, you know?”

She became a postdoctoral researcher in the lab of Andrew Houck, a professor of electrical and computer engineering and a Fellow in the Princeton Center for Theoretical Science. Houck worked with coplanar waveguides—little paths printed on a circuit board that confine light in a tube the thickness of a human hair. These paths have become the setting of many of Kollár’s mathematical explorations. 

Kollár was in her office one day, playing around with one of these coplanar waveguide chips. This one contained a waveguide lattice—a repeating grid, one waveguide after the other. Lattices are a familiar concept to physicists from the study of metals, where atomic nuclei form repeating patterns, extending in all three directions.

Kollar’s mathematical training bubbled up, flooding her brain with ideas. She envisioned a similar lattice, but instead of one dimension it would extend in two. And, she realized, thanks to the properties of coplanar waveguides, there was a lot of flexibility in the ways she could shape these grids.  

Instead of being points, as in a conventional lattice of nuclei in a metal, the sites of this lattice were paths—lines that guide light around. And, Kollár could bend and stretch these lines however she wanted without changing the underlying physics, as long as the total length stayed the same. 

Kollár realized that by scrunching and stretching these waveguides, she could connect them to each other in ways that aren’t possible for normal lattices of points, at least not in the world we are used to. Instead, the waveguides would act as though they are on the surface of a sphere, or a mathematical construction known as a hyperbolic surface, where traditional ideas of parallel lines, triangles and navigation break down.  

A hyperbolic surface is, in a sense, the opposite of a sphere. So much so that a two-dimensional hyperbolic surface can’t exist within our three-dimensional world—basically, it doesn’t fit. Kollár said the best way to imagine hyperbolic space is with some of M. C. Escher’s pictures. 

Kollár and her collaborators successfully showed that coplanar waveguides can indeed form lattices that act as though they live on a hyperbolic surface. 

Kollár found that these hyperbolic lattices had some cool physics properties. In particular, she found that they gave rise to something called flat bands—paradoxical places where, regardless of how fast a particle is moving, its energy stays the same. These flat bands are thought to be behind some of the most intriguing unexplained physical effects, like the fractional quantum Hall effect, spin-​liquids, and even some cases of high-temperature superconductivity. 

“When I discovered these flat bands, I actually thought I made a mistake in my code,” Kollár said, “I turned around to my lab partner, and I was like, ‘I think I messed up but if I didn’t, this is really cool.’ And so at the time, we didn't understand where that was coming from. What we've since come to understand is that was really just the tip of the iceberg.”

To understand the full potential of this new technique, Kollár joined forces with Peter Sarnak, professor of mathematics at the Institute for Advanced Study at Princeton. This collaboration has proved extremely fruitful. Together, they showed that the flat bands were far from a mistake. In fact, they proved that the flat bands must exist in any hyperbolic lattice of the kind Kollár creates.

“There's been this constant feedback between very general math theorems leading to good examples and then good examples leading to new math theorems,” Kollár said.

Now, she is leading her own group at UMD and is working on coupling bits of quantum information—called qubits—to these exotic lattices. She has assembled a group of like-minded students, interested in addressing novel physics. Although there’s no way to know exactly what the future holds for Kollár, it’s fair to anticipate that she will continue to follow her nose to interesting and unexpected places. 

“I think what was special about Alicia is that she always had her own mind and she did not want to follow what others were doing,” her father, János, said. “It can be frustrating when you're a two-year-old, but I think in the long run if you can follow your own mind very seriously it can work out very well.”

Written by Dina Genkina