Sasha Philippov Awarded 2024 Packard Fellowship

Assistant Professor Sasha Philippov has been named one of 20 members of the 2024 class of Packard Fellows for Science and Engineering. Sponsored by the David and Lucile Packard Foundation, the $875,000, five-year award for early-career researchers provides “flexible funding and the freedom to take risks and explore new frontiers in their fields of study,” according to the foundation.

Philippov is the seventh UMD faculty member—and the second from UMD’s Department of Physics—to receive this competitive award since its launch in 1988.

“I am delighted to see the recognition Sasha is receiving with the awarding of the Packard Fellowship,” said UMD Physics Chair Steven Rolston. “His outstanding work places our excellent plasma theory group at the center of multi-messenger astronomy, with multiple connections to efforts in physics and astronomy both within and beyond the university.”

Each year, the Packard Foundation invites 50 universities to nominate two faculty members for a Packard Fellowship, which is ultimately narrowed down to 20 recipients. Previous UMD awardees include Janice Reutt-Robey (chemistry and biochemistry) in 1990, William Pugh (computer science) in 1991, Victor Yakovenko (physics) in 1995, Victor Muñoz (formerly chemistry and biochemistry) and Sarah Tishkoff (formerly biology) in 2001, and Vedran Lekić (geology) in 2014.Sasha PhilippovSasha Philippov

Funding from the Packard Fellowship will enable Philippov to develop new computational codes capable of running on the world’s biggest supercomputers. In his research, Philippov uses computational astrophysics to study some of the most mysterious objects in the universe, including neutron stars and black holes. He is particularly interested in discovering how hot, magnetized gas—known as plasma—produces the light we see around exotic objects, such as the ring of light captured in the first image of a black hole in galaxy M87.

His new simulations would shed light on “how plasma shines around black holes,” as well as fast radio bursts—mysterious flashes of radio waves that are extremely bright and short-lived, lasting for mere milliseconds. Some of these extremely bright signals travel for billions of years before reaching Earth, but their exact origin remains an open question in astrophysics.

“Remarkable recent observational discoveries, including fast radio bursts and silhouettes of black holes, make it breathtaking and timely to work in this field,” Philippov said. “The common theoretical challenge to explaining stunning observations of neutron stars and black holes is understanding the behavior of relativistic plasma, the hot, magnetized, collisionless gas of charged particles producing the observed light under extreme conditions that we cannot explore on Earth.”

Simulations can complement images captured by the Event Horizon Telescope and other observatories, enabling researchers like Philippov to explore the physics of the highly energized electrons in plasma. He expressed gratitude to the Packard Foundation for supporting “high-risk, high-reward” research like the development of his new codes that could—if successful—yield much more realistic simulations.

“It could allow us to run three-dimensional kinetic simulations of black hole accretion, which we were not able to run before,” Philippov said.

Graduate students and postdoctoral researchers in Philippov’s lab will also play a hands-on role in developing this code, running and analyzing simulations, and constructing theoretical models of plasma phenomena.

Since joining UMD in 2022, Philippov has received a 2024 Sloan Research Fellowship, which provided him with $75,000 to study the production of neutrinos (weakly interacting particles) around black holes and magnetars (neutron stars with the strongest magnetic fields in the universe). He was also awarded a 2024 Thomas H. Stix Award for Outstanding Early Career Contributions to Plasma Physics Research for his “seminal contributions to the theory and simulation of collisionless astrophysical plasmas, especially compact objects.”

Although Philippov is excited to receive a Packard Fellowship, it is also bittersweet. Rolston and UMD Physics Professor Bill Dorland helped deliver the fellowship news to Philippov over a Zoom call last month, which ended up being the last time he and Dorland spoke.

Dorland, who was a mentor and friend to Philippov, died in September following a 20-year battle with chordoma, a rare cancer. In many ways, Philippov’s research will carry on Dorland’s legacy in computational plasma physics.

“Bill was a remarkable, kind and generous person. His passing left a giant void in all who had the privilege of knowing and working with him,” Philippov said. “He often mentioned that writing code is not just his job but a part of his very being. We will continue forging ahead in his memory.”

 

Original story by Emily C. Nunez: https://cmns.umd.edu/news-events/news/sasha-philippov-awarded-2024-packard-fellowship

Chacko Elected APS Fellow

Professor Zackaria Chacko has been elected Fellows of the American Physical Society. APS Fellowship recognizes excellence in physics and exceptional service to the physics community.

Chacko, who is a member of the Maryland Center for Fundamental Physics (MCFP), was cited for discovering two of the major theoretical scenarios for particle physics beyond the Standard Model — neutral naturalness and gaugino mediated supersymmetry breaking — and for inspiring experimental programs to test them.

Following his B.S. and M.S. degrees at the Indian Institute of Technology, Kharagpur, Chacko earned his Ph.D. in Physics at the University of Maryland in 1999, working with Markus Luty. While a graduate student at Maryland, he received the Michael J. Pelczar Award for Excellence in Graduate Study and was named an Outstanding Teaching Assistant.

He then held postdoctoral positions at the University of Washington and the University of California, Berkeley, before accepting the role of Assistant Professor at the University of Arizona. In 2007, he returned to the University of Maryland. He was promoted to Associate Professor in 2009 and full Professor in 2016. He has served on the department’s Priorities, Curriculum Review, and Graduate Admissions committees, and is currently a member of the editorial board of JHEP, the premier journal dedicated to elementary particle physics.

The primary focus of Chacko’s research is on proposing new theories that address the known problems of the Standard Model of particle physics which can be tested in current and future experiments. The work for which he received the award is related to a theoretical problem of the Standard Model, known as the “hierarchy problem”. The Higgs boson has a mass of order the weak scale, the mass scale of the force carriers of the weak interactions. However, in the Standard Model, quantum effects tend to make the Higgs many orders of magnitude heavier than the observed value. The fact that the Higgs is light then arises from a very delicate cancellation between completely independent effects, which seems extremely contrived.

An elegant class of solutions to the hierarchy problem involve extending the Standard Model to include new particles related to the known particles by a new symmetry of nature. The quantum effects of the new particles cancel against those of the Standard Model, explaining the lightness of the Higgs boson. Chacko was recognized for proposing two paradigms that realize this framework, gaugino mediated supersymmetry breaking and neutral naturalness, which have been enormously influential in the field and inspired novel experimental searches to discover them.    

“Chacko’s APS Fellowship highlights his highly original and influential proposals to solve one of the deepest mysteries of particle physics, the Hierarchy Problem,” said Raman Sundrum, Director of the MCFP. “This distinction is richly deserved.”

 

William Douglass Dorland, 1965-2024

Bill Dorland, an esteemed plasma and computational physicist who last week received the American Physical Society’s James Clerk Maxwell Prize, has died at age 58. Since a 2004 diagnosis of chordoma, a rare cancer affecting the spine, he optimistically pursued emerging therapies while advocating for the chordoma community, engaging in continued physics research and serving as a superb mentor and teacher.

After completing his undergraduate studies at the University of Texas (and winning the campus foosball tournament), Dorland earned both a Ph.D. in astrophysical sciences and a Master’s degree in public affairs at Princeton University. He returned to Texas, working at the Institute for Fusion Studies, before joining the University of Maryland in 1998 when his wife, Sarah C. Penniston-Dorland, accepted a fellowship at Johns Hopkins University.

Early in his career, Dorland’s calculations revealed that an international plan to build a gigantic fusion reactor was based on flawed science, thereby saving $10 billion and preventing a probable scientific debacle.

His work modeling plasma turbulence merited the prestigious E. O. Lawrence Medal of the Department of Energy. A Diamondback profile described Dorland’s reluctance to leave his class for a call from “the secretary”, who turned out to be Secretary of Energy Steven Chu relaying news of the award and its $50,000 honorarium.

During his career, Dorland held appointments at the University of Vienna, the University of Oxford and Imperial College, London.  From 2020-23, he served as associate laboratory director for Computational Science at the U.S. Department of Energy's Princeton Plasma Physics Lab, which is managed by Princeton University.

Dorland studied in Japan during high school, and found the experience invaluable and insightful. Arriving at the University of Texas, he was shocked by paucity of such opportunities, and launched a vigorous campaign to direct a fraction of student fees toward international exchanges. The number of students studying abroad from UT grew from eight his freshmen year to more than a thousand four years later. In 2000, he received a special award by the Council on International Education Exchange.

At UMD, he co-developed new curricula, including Physics for Decision Makers: The Global Energy Crisis, a Marquee course to instruct non-science majors in perhaps the world’s most pressing challenge. He was a remarkable mentor; three of Dorland’s undergraduate advisees have received the University Medal.  Twice he officiated the weddings of UMD graduate students.

When his chordoma diagnosis prompted an assessment of his life and priorities, he sought the role of director of the UMD Honors College, recalling his own transformative experience as a UT undergrad. For seven years, he advocated for new programs and encouraged study abroad experiences. In a Maryland Today  article during that time, he described continuing his work through his tortuous medical odyssey with the support of his wife, a professor in the Department of geology, and his daughter Kendall.  The family asks that those interested in commemorating Bill do so with a donation to the Chordoma Foundation.

In 2010, Dorland was named a UMD Distinguished Scholar-Teacher (DST). In a letter supporting the nomination, one student described Dorland as “the sort of genius who, while always impressive, is never intimidating….His cheerful encouragement, quirky sense of humor, and constant support were what kept me going in graduate school, even when finishing the dissertation seemed like an impossible goal.”

In his own DST essay, Dorland wrote that after his diagnosis, “I had occasion to reconsider all the decisions I had made in life, and to adjust my trajectory accordingly for the time remaining. I spent a few weeks thinking hard, and was extraordinarily happy to find that I was already doing exactly that which gives me the most satisfaction.”

He concluded: “I generally work as hard as I can to challenge the best students at the University of Maryland to perform at their very best level. This is my mission. It is nothing more than teaching, research, and love.”


Dorland Selected for APS Maxwell Prize

Professor William Dorland will receive the American Physical Society’s (APS) 2024 James Clerk Maxwell Prize for Plasma Physics for “pioneering work in kinetic plasma turbulence that revolutionizes turbulent transport calculations for magnetic confinement devices and inspires research in astrophysical plasma turbulence". This honor—shared with Greg Hammett, Dorland’s doctoral advisor from Princeton University—will be presented at the 66th Annual Meeting of the APS Division of Plasma Physics in October.

The James Clerk Maxwell Prize annually recognizes outstanding contributions to the field of plasma physics.  The prize is named after a nineteenth century Scottish physicist known for his work with electricity, magnetism and light.Bill Dorland (photo by Mark Sherwood)Bill Dorland (photo by Mark Sherwood)

Dorland graduated with a B.S. in physics (with special and highest honors) from the University of Texas in 1988, and received his Ph.D. in Astrophysical Sciences from Princeton University in 1993. He also earned a Master’s degree in Public Affairs from the Princeton School of Public and International Affairs in 1993, after completing a course of study focused on international science policy.

He then accepted an appointment as a Department of Energy Fusion Postdoctoral Fellow at the Institute for Fusion Studies of the University of Texas and rose to the rank of Associate Research Scientist before joining the University of Maryland in 1998. He holds a joint appointment in Physics and the Institute for Research in Electronics and Applied Physics (IREAP). Dorland has been a Visiting Professor of Theoretical Physics at the University of Oxford since 2010 and held a previous appointment in the Department of Physics of Imperial College, London. From 2020-23, he served as Associate Laboratory Director for Computational Science at the Princeton Plasma Physics Lab.

In 2005, Dorland was elected a Fellow of the APS Division of Plasma Physics. He won the Department of Energy’s 2009 E. O. Lawrence Medal for “his scientific leadership in the development of comprehensive computer simulations of plasma turbulence, and his specific predictions, insights, and improved understanding of turbulent transport in magnetically-confined plasma experiments”.

Dorland is a UMD Distinguished Scholar-Teacher, a recipient of the Richard A. Ferrell Distinguished Faculty Fellowship and a Merrill Presidential Faculty Mentor. He served as Director of the UMD Honors College for seven years, and afterward was cited with an Honors College Outstanding Faculty Award. Three of Dorland’s undergraduate mentees have received the University Medal.  He has been active in professional societies, contributing to APS advocacy for the international freedom of scientists, human rights and national security. He has published more than 150 journal articles.

“With his brilliant insights, Bill Dorland has fundamentally transformed the exploration of turbulence in fusion and astrophysical plasmas, and the Maxwell Prize is an immense and appropriate honor,” said Physics chair Steve Rolston. “In addition, he has been an extraordinary teacher, fantastic colleague and superb mentor. I could not be happier about this recognition.”

The prize carries a $10,000 stipend. UMD physicists who have won the Maxwell Prize include Tom Antonsen,  Phillip A. Sprangle, Roald Sagdeev, James Drake, Hans R. Griem, and Ronald C. Davidson.

Bill Dorland died days after this story was published. Read more about him here: https://umdphysics.umd.edu/about-us/news/department-news/1982-dorland.html

Curious About the Cosmos

For the last four years, Aneesh Anandanatarajan has kept a running list of “big questions” about the universe and how it works. He started the list in high school but shows no signs of slowing down in his senior year as an astronomy and physics dual-degree student at the University of Maryland.Aneesh AnandanatarajanAneesh Anandanatarajan

“I am the type of person to ask questions until someone tells me to stop,” Anandanatarajan said. “I have about 40 questions on my list, and I like to return to them to see how I’ve progressed in terms of what I've learned and what I’m interested in.”

One of his early questions—how are electricity and magnetism related?—was written at a time when Anandanatarajan knew little about plasma astrophysics. Now, he’s conducting research in Physics Assistant Professor Sasha Philippov’s lab, where he uses physics-based simulations to study the turbulent environment and complex electromagnetic interactions around supermassive black holes.

While Anandanatarajan loves asking questions, he’s happiest sharing what he learned with others. As the tutoring chair for UMD’s Society of Physics Students, Anandanatarajan has become a physics ambassador while strengthening his knowledge of the subject.Aneesh Anandanatarajan and Othello GomesAneesh Anandanatarajan and Othello Gomes

“As a tutor and as the tutoring chair, it has been important to me to know physics well. I want to fully understand where these different concepts and equations come from,” Anandanatarajan said. “One of the things I'm most excited about is sharing physics with other people.”

Virtually hooked

Anandanatarajan has been interested in exotic objects like black holes and neutron stars since middle school, but he didn’t discover this passion in a lab or a planetarium. While watching YouTube one day, he found a channel with buzzy animated videos about popular science topics, including astronomy and physics. A few videos later, he was hooked.

“It captured my interest in more ways than I expected because I didn’t really know much about those subjects before middle school,” he said. “Over time, I watched more videos and realized that astronomy might be something I’d like to learn more about at an academic and professional level.”

Anandanatarajan said he was initially attracted to UMD’s “great astronomy program,” but he was thrilled to learn that he could add a second degree in physics by taking a few more classes. He’s enjoyed learning from professors who are exploring diverse fields of research.

“There are a lot of really great research topics here at Maryland and professors that are doing active research in those fields,” he said. “I’ve had a lot of great experiences with professors that want me to succeed and have pushed me to succeed.”

One of those professors is Philippov, whom Anandanatarajan started working with in spring 2024. Philippov studies high-energy astrophysics through a blend of theory and computer modeling with a focus on the physics of plasmas—hot, ionized gas surrounding black holes, neutron stars and other celestial objects. 

Anandanatarajan is using computer simulations to study how plasmas composed of electrons and positrons interact with other particles in the corona, an extremely hot and highly magnetized region that surrounds black holes, our sun and other space objects. Through a process called annihilation, these interactions can produce gamma rays, a type of radiation that astronomers can study to learn more about the universe.

“The corona is a very mysterious region that a lot of astronomers are very interested in probing,” Anandanatarajan said. “It’s essentially a breeding ground for electromagnetic activity, so we'd like to understand the phenomena that occur in that region because there are a lot of unknowns when it comes to our observations.”

Through this research, Anandanatarajan learned how to run Monte Carlo simulations that predict the probability of different outcomes—a skill that proved useful on other projects, like the up-and-coming study of high-energy particle collisions.

When interests collide

During the spring 2024 semester, a project in Physics Assistant Professor Christopher Palmer’s PHYS 441: “Introduction to Particle Physics” course let Anandanatarajan play an unexpected role in the next Large Hadron Collider (LHC).

During the course, Palmer teamed up with faculty at MIT to give students a front-row seat to discussions involving the Future Circular Collider (FCC), a proposed collider that would push the boundaries of particle physics beyond the capabilities of the LHC. The hope is that an upgraded collider could discover new particles or find evidence that deviates from the Standard Model of physics, which describes the fundamental forces that shape the universe.

Anandanatarajan and other students at UMD and MIT analyzed Monte Carlo simulations to determine how to precisely measure novel processes produced in electron-positron collisions from the FCCee accelerator, the first stage of the FCC.

“Essentially what we wanted to do was characterize different kinematic properties, such as the energy, momentum and angles at which these produced particles came out,” Anandanatarajan explained.

In March, this culminated in a visit to the second annual FCC workshop, where students presented their projects and spoke with leaders in the field.

“We learned a lot about how high-energy physics is conducted and the planning that is needed for a mega collider that may or may not be built 30 years from now,” Anandanatarajan said. “We talked to many different experts in the field who were thankfully friendly and willing to talk to undergrads about these types of topics.”

This experience initially felt disparate from his other projects, but Anandanatarajan realized that electron-positron collisions and large Monte Carlo simulations play an important role in astrophysics, too. After he earns his undergraduate degree, Anandanatarajan plans to continue studying astrophysics in a Ph.D. program that will allow him to keep asking—and answering—those big questions he’s carried with him for years.

Until then, he looks forward to spending his senior year sharing his passion with anyone willing to listen. He has several ideas for the Society of Physics Students—including a possible YouTube channel, harking back to his initial inspiration—to get students more engaged in physics.

“Making people excited about physics has always been a passion of mine,” he said. “I feel like I enjoy physics more than the average person, so I want to share those feelings with others and show them all of the cool things that physics has to offer.”