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Band Structures and Flat Bands

Effective Full-Wave Hamiltonian
H (X) = Hpx
® Can be derived from layout
and graph theory
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Combining:
® Incidence Operator
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If coordination
number is constant:

® Energies shift up

® Momentum structure
unchanged

® Flat band(s) appear at -2

® Layout edges become line-graph points O
® \/ertex creates all-to-all coupling
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Heptagon-Kagome Device

Device Layout Numerical DOS Measured Transmission

® F\W transmission at 16 GHz
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Graphene

Line Graph

e

Layout edges become line-graph points
® \ertex creates all-to-all coupling
® 3-way vertex ->triangle

® Flat-band state
alternating,
localized by
interference

DOS related,
even if band
structure
cannot be
found.

® Theoretical simulation with systematic and random disorder
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Subdivision Graphs and Maximal Gaps

Subdivision Line Graph Line Graph
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® 2D, Euclidean ® Hardware-compatible
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® Maximal Gap
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Effective Lattice

Quasi-1D Chain

Good surface to volume
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Photonic Bound States

1D-Photonic Crystal + qubit Other Forms of Interaction Need:

e Effective swap interaction ® More sophisticated coupling scheme

® All modes in parallel o Raman-cloupled Fluxonium |
5 ® More sophisticated photonic crystal

H=hofo; » A(:;z) U (20 (22) + he.c. e Flat band

e Dirac Cone
e 2D
e Hyperbolic lattice

® Exponentially localized interaction

Flat-band-mediated Interaction:
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® Triangles
cause frustration
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Quibit 1
Raman Coupling
e Microwave-activated coupling ~ Two-Qubit Prototype
® Two relevant detunings NI ERL uw\ﬁ .
e Effective swap interaction == AN ’.{L\/’ | 3
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® Multiple microwave drives
superimpose interactions

® c.g. Approximate power-law
gl interactions
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