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Quasi-1D	Chain

• Good	surface	to	volume	

• Side	access	to	bulk	

• Small	unit	cell	

• Near-maximal	gap	
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• Gapped flat band 
• Edge-states in yellow

• FW transmission at 16 GHz 
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Band Structures and Flat Bands
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Photonic Bound States

1D-Photonic	Crystal	+	qubit	

• Effective swap interaction 
• All modes in parallel

as seen in Figs. 1(e), 1(f), and Appendix D. We note that the
transmission dip observed in Figs. 1(e) and 1(f) is due to the
reflection from the transmon qubit [22–24]. State localiza-
tion is tunable in situ with frequency through a range
determined by device parameters, including transmon
qubit-waveguide coupling and band curvature. Compared
with previous work, we attain increased localization in this
device [Fig. 1(b)] due mainly to a flatter band dispersion,
realized by tailoring the unit cell of the photonic crystal (see
Appendix A for a detailed discussion of the experimental
parameters of our system). The bound-state localization
length in this device is still widely tunable, which is critical
for realizing strong, tunable interaction between spatially
separated bound states. As the different coupling regimes
translate to dramatically altered system behavior [7], it is
important to determinewhich domain our system falls under.
In systems such as the one presented here, qubit emission
into the waveguide being larger than the other decay rates
(coherent atom-photon interaction rates larger than decay
rates) is the minimal coupling criterion, upon which the
dressed bound statewithin the gap can be spectrally resolved
[7]. The strong coupling criterion corresponds to the
situation where a bare qubit resonant with the band edge
gives rise to a bound state that is shifted from the band edge

bymore than the bound state’s linewidth [7,13]. In our finite
system, we observe an approximately 250-MHz separation
between the bound state and the band edgewith bound-state
linewidth of 4 MHz when a qubit is resonant with the band
edge, thus firmly reaching the strong coupling condition [see
Figs. 1(b), 1(e), and 1(f)]. By fabricating two transmon
qubits in the photonic crystal [see Fig. 1(a) and Appendix B
for a discussion on coupling transmons to photonic crystals],
we realize multiple, spectrally resolvable bound states and
can study interbound-state interaction.
The nature of interbound-state interaction makes this

platform intrinsically well suited for investigating one-
dimensional chains of bound states [see Fig. 1(c)]. Realizing
sizable chains is possible by increasing the number of unit
cells—a property that does not impact the Bloch mode
distribution or band dispersion. Thus, qubits can be in
separate unit cells but realize nearly identical coupling to
the band edge. As the strength of interbound-state interaction
depends on the spatial overlap of the photonicwave functions
with the qubits, the distance separating qubits (set by device
design) is directlymapped into the interactions of the system,
maintaining the chainlike interaction pattern. Furthermore,
in the investigation of bound states, the finite size of the
crystal is a practical advantage: the overlaps of bound states
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FIG. 1. A platform for interacting dressed bound states.—(a) A 16-site microwave photonic crystal is realized by alternating sections
of high and low impedance coplanar waveguide. Two transmon qubits (multilevel, anharmonic energy ladder) are in neighboring unit
cells in the middle of the device, centered in the high impedance sections for maximal coupling to the band edge at 7.8 GHz [all values
presented in units of ð2πÞ Hz, i.e., ωBE ¼ 7.8 ð2πÞ GHz]. For this experiment, the passband (band gap) refers to states above (below) the
band-edge frequency. Each transmon is individually tunable in frequency via a local flux bias line. (b) Bound-state linewidth, an indirect
measure of localization, varies with bare transmon qubit frequency. The wide range over which photon localization can be tuned
indicates the feasibility of realizing a chain of strongly interacting bound states. Experimentally measured and simulated linewidths are
shown in red and black, respectively. Inset: Overlay of simulated S21 from the transfer matrix method (blue) and measured high-power
S21 (black) shows good agreement in bare crystal characteristics. (c) The interaction between bound states will be determined by overlap
of their localized photonic envelopes with the qubits. (d) One can couple more qubits to the band edge by adding them to other cells of
the photonic crystal. In such a system, the localization-length-dependent interaction of the bound states would preserve the spatial
organization of qubits across the crystal, and determine the many-body structure of the interactions. (e) Experimental data and
(f) hopping model simulation for S21 vs single-qubit frequency and probe frequency. The bare band edge is at 7.797 GHz. The bright
peak in the band gap is the dressed qubit-photon bound state. The bound state always exists within the band gap for qubit frequencies
(the other qubit is far detuned and has negligible effect) both above and below the band edge—a clear signature of non-Markovianity.
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Other	Forms	of	InteracHon	Need:

Liu	et	al.	Nature	Physics	(2016)

crystal, is smaller. However, because the band edge is not at
zero momentum in our system, it turns out the symmetric
state is actually dimmed and has a smaller linewidth, as we
prove in Appendix D 2. In Fig. 3(e), we see that the bound
states at the same transmission frequency (with different
bare qubit frequencies) have drastically different linewidths
with the higher-frequency bound state having a smaller
linewidth, consistent with our numerical simulations
[Figs. 3(f) and 8(d)]. This provides some indirect exper-
imental evidence that the qubit part of the higher (lower)
frequency bound-state wave function is indeed symmetric
(antisymmetric).
To further study tunable on-site interaction, we

probe the interacting bound states beyond the one-
excitation manifold using spectroscopic measurements
[see Fig. 4(a)]. Similar to spectroscopy of qubits in
cavities, we can use transmission at the band edge to help
detect bound-state transitions, a technique that provides
sharper contrast compared to transmission measurement

for the more highly localized bound states and allows
detection of higher-dressed transitions, such as the
transition between j0i and j2i driven by two photons
of frequency ω02=2.
With this technique we detect interaction between j02i,

j20i, and j11i of the coupled bound states, observed as
avoided level crossings. In addition to the single-photon
exchange interaction between j02i (j20i) and j11i [26],
remarkably we measure the two-photon virtual interaction
between j20i and j02i, despite the fact that this process is
fourth order in coupling g (see Appendix F 2). This two-
photon interaction shows consistent dependence on detun-
ing: increasing in strength (from 0MHz to over 10 MHz) as
the bound states shift towards the band edge and the states
become more delocalized [see inset of Fig. 4(a)].
Numerical simulations [Fig. 4(b)] are consistent with
experimental data and capture the relative magnitudes of
interaction between levels as well as frequency dependence
on coupling strengths. Observation of this small interaction
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FIG. 3. Interacting bound states.—Interaction between bound states is characterized by the avoided crossing (observed in S21
measurement) that arises while tuning one qubit (y axis) through resonance with the other (fixed). (a) An avoided crossing of 240 MHz is
observed when the fixed qubit is at 7.73 GHz. The two points where transmission amplitude of a bound state dims are understood as the
bound-state peak being resonant with the qubit frequency. (a), inset—Hopping model simulation of the one-excitation manifold is
consistent with experimental observation. The lamb shift in the hopping model originates from next-nearest-neighbor interaction
between coupled cavities. (b),(c),(d) Tunable bound-state interaction strength is illustrated in example bound-state avoided level
crossings for a fixed qubit whose bare frequency is circa 6.125, 6.75, and 7.625 GHz. As qubits are detuned further from the band edge,
bound states are more tightly localized, reducing overlap and thus reducing interaction. (e),(f) Transmission when the qubits are on
resonance across a range of qubit frequencies in the experiment and the simulation, respectively. The uneven linewidths of the two
bound states when they occur at the same frequency suggest they are symmetric (higher-frequency bound state) and antisymmetric
(lower-frequency bound state) states (see main text). (g) Bound-state avoided crossing and qubit population (from simulation) as a
function of average bound-state frequency. A steady reduction in interaction strength occurs with increasing detuning from the band
edge (moving deeper into the band gap) due to increasing localization of the bound states. Hopping model simulation (black) captures
this detuning-dependent behavior observed in experiment (red). Near the band edge, both bound states (blue and cyan) have a significant
photonic contribution.
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2-qubit	avoided	
crossing	due	to	
interacBon

• More sophisticated coupling scheme 

• Raman-coupled Fluxonium

• More sophisticated photonic crystal 
• Flat band 
• Dirac Cone 

• 2D 

• Hyperbolic lattice

Raman	Coupling

• Microwave-activated coupling 
• Two relevant detunings 
• Effective swap interaction
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• Multiple microwave drives 
superimpose interactions 
• e.g. Approximate power-law 
interactions

(CollaboraBon	with	Houck	Group,	Princeton)

Two-Qubit	Prototype

Flat-band-mediated	InteracHon:

InteracBon	v.	Qubit	2	PosiBon

Qubit 1

1

0

-1

InteracBon	Energy	(AU
)

• Short-range 
antiferromagnet

• Triangles 
cause frustration
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