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• Sparsely connected directed  
   random network with D nodes.
• Adjacency matrix: 
• State of the ith node: 
• State of the reservoir: Reservoir Network

Prediction: A feedback connection is added so that the 
reservoir runs autonomously for 

OUR IMPLEMENTATION OF 
RESERVOIR COMPUTING

MACHINE LEARNING SCALABILITY 
(without a knowledge-based model): 

FORECASTING HIGH-DIMENSIONAL CHAOS

SCALABLE HYBRID MACHINE LEARNING MODEL

Parallelized Training
Parallelized Prediction with Feedback

For scalable forecasting of very high dimensional chaotic dynamicals systems, we combine the paral-
lelized machine learning technique with an imperfect knowledge-based model.
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Putative unknown test system: the Kuramoto-Sivashinky 
equation,

with L = 100, DKY = 23.
This example uses 32 reservoirs in parallel.

The parallelized reservoir prediction scheme can scale to 
arbitrarily high-dimensional chaotic systems.
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AN EXAMPLE: GLOBAL WEATHER FORECASTING
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GOAL: Improve forecasting of very large, complex 
spatiotemporally chaotic systems.

SETTING: A knowledge-based predictor is avail-
able, but its utility is limited by error in its 
forumation. In addition, we have access 
to a limited time series of measured 
system states.

APPROACH: Use machine learning (reservoir com-
puting1,2,3) and available training data in 
combination with the imperfect knowl-
edge-based model to enhance predic-
tion.

CHALLENGE: Feasibility and scalability of the ma-
chine learning to very large systems of 
interest.

APPLICATIONS: Forecasting the weather, ocean 
conditions, conditions in the solar 
wind, the magnetosphere & iono-
sphere, forest fire evolution, ecosys-
tem response to climate variation, and 
neural activity. 

Train Data: Time series measurements of system 
state        for                    .u(t) −T ≤ t ≤ 0

Training: (1) Input         to reservoir I/O system,u(t)

(2) Record and store                   for  u(t), r(t) −T ≤ t ≤ 0

(3) Adjust the matrix            to achieve:  

For true trajectory
For the imperfect model
in our example
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1.5 DEMONSTRATION OF SCALABILITY
RMS Error average over 100 predictions of the KS equation
vs. L (system size) with [(number of reservoirs)/L] held 
constant at 0.16 and the reservoir size held constant 
at 4000 nodes.

The RMS Error remains relatively invariant as L increases,
indicating that our hybrid method can scale to large systems.

Training Data: 9 years of data6 interpolated onto a 96 by 48 grid with 8 vertical layers

Model Variables: Temperature, horizontal wind vector, and specific humidity at each grid point, plus 
earth surface pressure, leading to a total of 152,064 system variables.

Machine Learning: 1,152 reservoirs, each with 5,000 nodes, are each trained to predict system 
variables in a 2 by 2 grid (512 variables per reservoir).

Knowledge-based Model: SPEEDY7, a low-resolution atmospheric global model.

v = Woutr

Win Wout

Wout

for  Woutr(t+∆t) u(t+∆t), −T ≤ t ≤ 0

r(t+∆t) = tanh Ar(t) +WinWoutr(t)

The prediction is  Woutr(t) = v(t)
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We compare the global RMS error between 
predictions of the surface temperature and 
the truth. We find that, compared to per-
sistance from the initial condition, SPEEDY 
has no predictive skill, while the hybrid fore-
cast is stable and has predictive skill for the 
investigated 36 hours.
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Surface Temperature RMS Error

Hybrid
Persistence
SPEEDY

True Surface Temperature after 36 Hours Hybrid Surface Temperature 36 Hour Forecast

232 240 248 256 264 272 280 288 296 304
Kelvin


