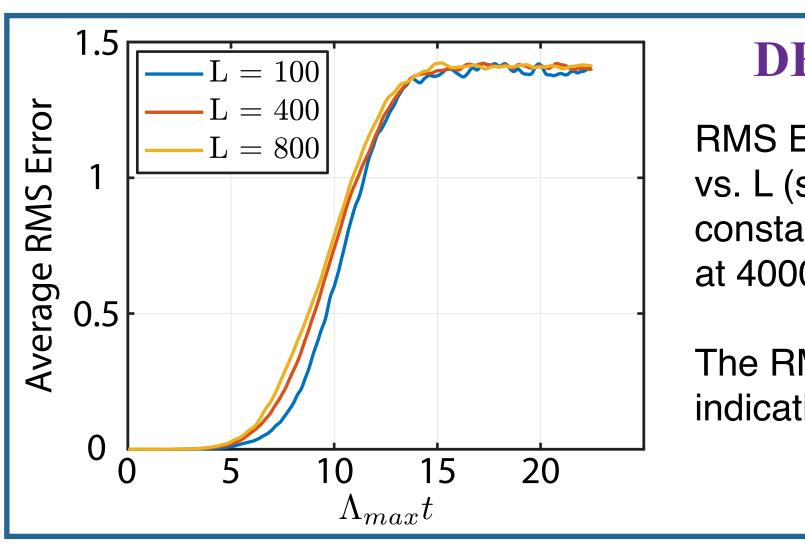


COMBINING MACHINE LEARNING WITH KNOWLEDGE-BASED MODELING FOR SCALABLE FORECASTING OF VERY LARGE, COMPLEX, SPATIOTEMPORALLY CHAOTIC PROCESSES ALEXANDER WIKNER¹, JAIDEEP PATHAK¹, TROY ARCOMANO², ISTVAN SZUNYOGH², BRIAN HUNT¹, MICHELLE GIRVAN¹, EDWARD OTT¹



AN EXAMPLE: GLOBAL WEATHER FORECASTING

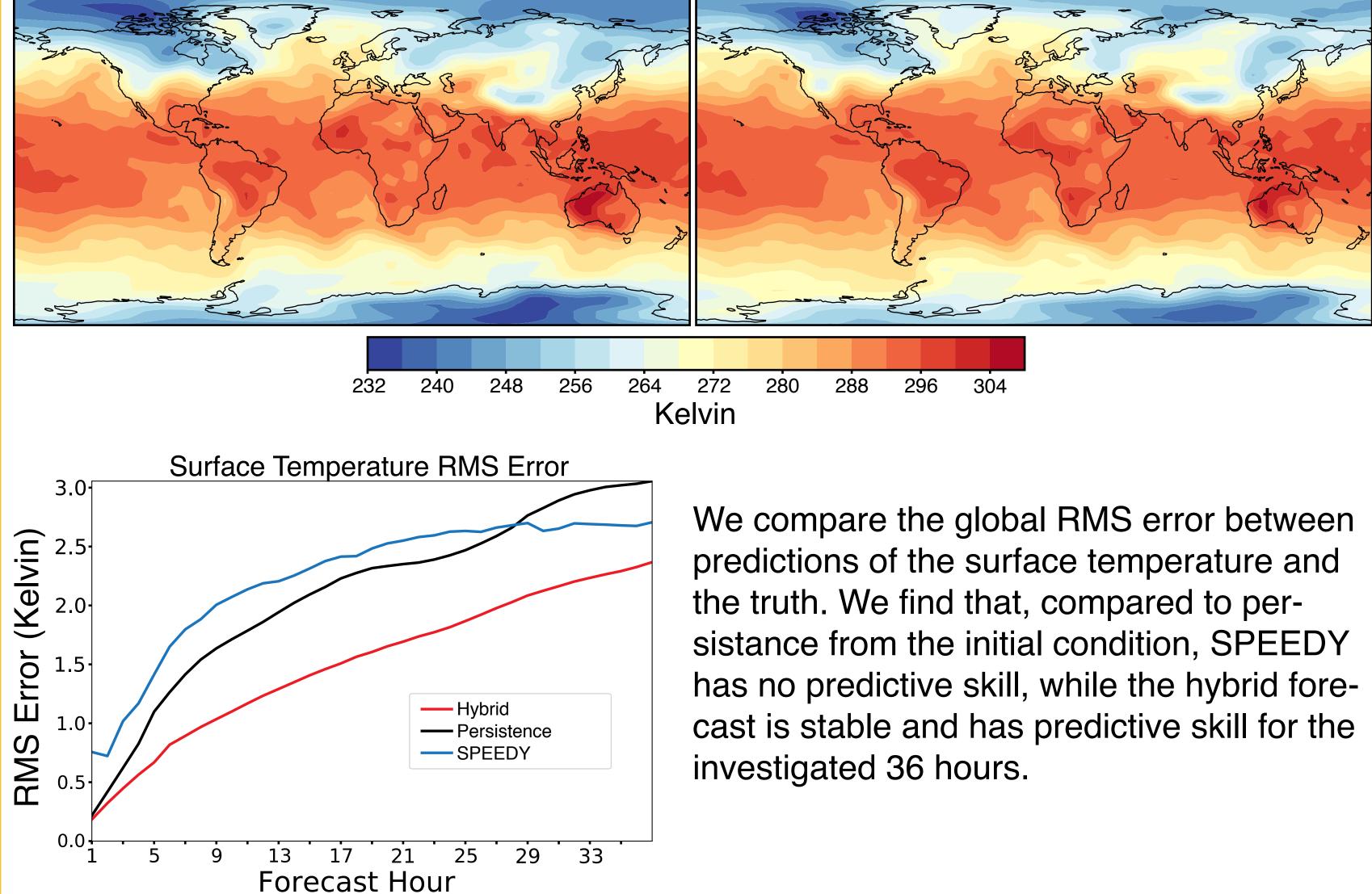
Training Data: 9 years of data⁶ interpolated onto a 96 by 48 grid with 8 vertical layers

Model Variables: Temperature, horizontal wind vector, and specific humidity at each grid point, plus earth surface pressure, leading to a total of 152,064 system variables.

Machine Learning: 1,152 reservoirs, each with 5,000 nodes, are each trained to predict system variables in a 2 by 2 grid (512 variables per reservoir).

Knowledge-based Model: SPEEDY⁷, a low-resolution atmospheric global model.

True Surface Temperature after 36 Hours



[1] Jaeger et al. Science (2004) [2] Jaeger. GMD Technical Report (2001). [3] Maass et al. Neural Computation (2002).

[4] Pathak et al. **Physical Review** Letters (2018).

[5] Pathak et al. **Chaos (2018)**.

ACKNOWLEGEMENTS

We gratefully acknowledge financial support from DARPA under contract number HR00111890044 and travel support from NSF under award DGE-1632976

DEMONSTRATION OF SCALABILITY

RMS Error average over 100 predictions of the KS equation vs. L (system size) with [(number of reservoirs)/L] held constant at 0.16 and the reservoir size held constant at 4000 nodes.

The RMS Error remains relatively invariant as L increases, indicating that our hybrid method can scale to large systems.

Hybrid Surface Temperature 36 Hour Forecast

REFERENCES

[6] C3S, https://cds.climate.copernicus.eu/cdsapp#!/home (2017).

[7] Molteni **Clim. Dyn. (2003)**, Kucharski et al. Clim. Dyn. (2006).

