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OVERVIEW MACHINE LEARNING SCALABILITY | | e DEMONSTRATION OF SCALABILITY
GOAL: Improve forecasting of very large, complex (without a knowledge-based model): ::j RMS Error average over 100 predictions of the KS equation
spatiotemporally chaotic systems. FORECASTING HIGH-DIMENSIONAL CHAOS % vs. L (system size) with [(number of reservoirs)/L] held
. . . " 5 constant at 0.16 and the reservoir size held constant
SETTING: A knowledge-based predictor is avail- *—o ” 1 4000 nodes
able, but its utility is limited by error in its g '
Igrgl*lnri\r?]tig(;. tlirr:n 2?;;2, (;/}/em I;eetl\;eu Iraeczjc:ess :% The RMS Error remains relatively invariant as L increases,
system states. ® indicating that our hybrid method can scale to large systems.
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0 Parallelized Prediction with Feedback
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{W‘M/ | \'H v L)2 Putative unknown test system: the Kuramoto-Sivashinky
vV equation, AN EXAMPLE: GLOBAL WEATHER FORECASTING
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| | | I —— 5 = Yo, T a2 fph Training Data: 9 years of data® interpolated onto a 96 by 48 grid with 8 vertical layers
APPROACH: Use machine learning (reservoir com-
puting®23) and available training data in L/2 z €10, L) Model Variables: Temperature, horizontal wind vector, and specific humidity at each grid point, plus
combination with the imperfect knowl- y(z + L,t) = y(z,t) earth surface pressure, leading to a total of 152,064 system variables.
edge-based model to enhance predic- L _ _ | | | |
tion. 0 with L = 100 D.. = 23 Machine Learning: 1,152 reservoirs, each with 5,000 nodes, are each trained to predict system
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This example uses 32 reservoirs in parallel. variables in a 2 by 2 grid (512 variables per reservoir).

CHALLENGE: Feasibility and scalability of the ma- L/2
chine learning to very large systems of
interest. T,

, , L Knowledge-based Model: SPEEDY”, a low-resolution atmospheric global model.
The parallelized reservoir prediction scheme can scale to

arbitrarily high-dimensional chaotic systems.
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APPLICATIONS: Forecasting the weather, ocean
conditions, conditions in the solar
wind, the magnetosphere & iono-

sphere, forest fire evolution, ecosys- SCALABLE HYBRID MACHINE LEARNING MODEL
tem response to climate variation, and
neural activity. For scalable forecasting of very high dimensional chaotic dynamicals systems, we combine the paral- | »/
lelized machine learning technique with an imperfect knowledge-based model. } o .  “ /BN
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State of the reservoir:r(t). "7 / \ /\ Al odel forecast = predictions of the surface temperature and
W Global — 7 * Tt T Y Global 2 2.0 the truth. We find that, compared to per-
out Forecast Model -’ ol el o e\ ot ‘o Fgrecast Model =~ . e ey -
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_________________ ® . . . .
RIO Spatial Grid time ¢ state = L has no predictive skill, while the hybrid fore-
— rl . . . .
. 9 2y oy y(. ) c"',j L.0- — Persistence cast is stable and has predictive skill for the
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Train Data: Time series measurements of system | ' i
state u(t) for -7 <t <0. ¢ =0 Fortrue trajectory | 00—
e = 0.1 For the imperfect model _ 1 > 7 P el 2529 33
Training: (1) Input u(t¢) to reservoir I/O system, in our example 50 -3 Forecast Hour
r(t + At) = tanh[Ar(t) + W, u(t)]. 0
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