

Search for Heavy Resonances with CMS

Kerstin Hoepfner, RWTH Aachen, III. Phys. Inst. A
On behalf of the CMS collaboration

SEARCH2012: Workshop on Characteristics of New Physcis, University of Maryland, College Park, MD, March 17-19

OUTLINE

Searches for:

1. Narrow, new resonances (Z', RS) EXO-11-009 with 4.7 fb⁻¹ (dileptons)

EXO-11-061 with 4.7 fb⁻¹ (jet + MET)

2. Heavy, charged bosons W' EXO-11-024 with 4.7 fb⁻¹ (lv)

EXO-11-041 with 4.7 fb⁻¹ (WZ)

- 3. 2nd generation Leptoquarks EXO-11-028 with 2 fb⁻¹
- 4. 3rd generation Leptoquarks EXO-11-030 with 1.8 fb⁻¹
- 5. Summary

High p_T Muon Selection

High redundancy of mu system, 4 stations along track Iron between stations may cause bremsstrahlung for O(TeV) muons p_{T} <200 GeV tracker in B=3.8T, p_{T} >200 GeV mu+tracker

Dedicated muon selection:

- Special algorithm to consider showering
- At least 1 pixel hit
- Number of measured tracker layers > 8
- Transverse impact parameter d0 < =0.2cm (Z´), 0.02cm (W´) reject cosmics, value for W´tighter than other analyses, Z´ rejects in addition back-to-back muons
- >= 2 matched muon segments
- Relative track isolation <0.10 in $\Delta R < 0.3$
- No cut on chi2 cut introduces a 4-6% inefficiency for muons >500 GeV

High Energy Electron Selection

ecal made of matrix of fully active crystals. Measured energy resolution ~2%

Electrons are reconstructed from energy clusters In the ECAL and tracks from the silicon track<u>er</u> Electron ID optimized for high E_T requires:

- E_T > 85 GeV
- |η| < 1.442 (barrel) or 1.56 < |η| < 2.5 (endcap)
- Good quality of track and cluster
- Matching between the two
- Isolation

Z'/RS-头从

Signature: two isolated high energy electrons or two isolated, oppositesign muons; forming a resonance

Also searches with dijets and boosted top-pairs, see other CMS talks

Z'/RS Assumptions & Channels

CMS PAS EXO-11-019

Assume similar decays as for Standard Model (plus decay into top quarks)

Generic search for new physics: extra high-mass **resonances** in dilepton spectrum: e.g. new gauge bosons Z', Randall-Sundrum gravitons (RSG)

two isolated high energy electrons

Forming a resonance

two isolated, opposite-sign muons

Triggered by **single lepton** trigger with increasing threshold One common offline p_T cut, above highest trigger threshold

Method of Analysis

CMS PAS EXO-11-019

- Use dedicated high p_T lepton ID to avoid misreconstruction
- Reconstruct invariant mass M_{ll}
- Search for generic excess in invariant dielectron and dimuon mass spectra
- Many studies concerning efficiencies etc. at such high invariant masses

Generic shape-based search: no assumptions on absolute background rate, with results normalized to the Z⁰ peak

Differences \rightarrow small extra systematic uncertainties.

$$\frac{\sigma \times BR(Z')}{\sigma \times BR(Z^0)} = \frac{N(Z')}{N(Z^0)} \times \frac{A(Z^0)}{A(Z')} \times \frac{\epsilon(Z^0)}{\epsilon(Z')}$$

Sources of Background

Dominant irreducible SM DY

- From POWHEG MC, normalized to data at Z-peak
- PDF uncertainties 5-20%

Jets faking electrons (ee)

- From γ-triggered events.
 Subtract W/γ+jets using MC.
- Ratio GSF/HEEP
- Max. fake rate ~2% (barrel),
 3% (EC). Decreasing with E_T

Cosmics (μμ)

 Largely reduced by back-toback cut

tt and tt-like background

- main bkgr in $\mathsf{M}_{\ell\ell}$ tail
- With emu method from MC
- Shape and normalization checked in data

4.7/fb Dielectron mass spectrum

CMS PAS EXO-11-019

- At least one electron has to be in the barrel
- 70% acceptance * efficiency
- Main background due to DY, NLO uncertainties ~6%, PDF uncertainties <20%
- Some contribution from tt and jets faking electrons

The uncertainties on the data points (statistical only) represent 68% confidence intervals for the Poisson means

4.9/fb Dimuon mass spectrum CMS PAS EXO-11-019

- Taking full acceptance, up to η<2.4
- 85% acceptance * efficiency
- Main background due to DY, NLO uncertainties like electron channel

The uncertainties on the data points (statistical only) represent 68% confidence intervals for the Poisson means

Exclusion Limit – Dielectrons

CMS PAS EXO-11-019

Exclusion limit on ratio of cross sections using **Bayesian** method.

 $R_{\sigma} = \frac{\sigma(pp \to Z' + X \to \ell\ell + X)}{\sigma(pp \to Z + X \to \ell\ell + X)}$

Cross check with simple cut- e².
 and-count method

Limit input:

- Bkgr shape (exponential above Z-peak), 15% error [200-2000] 10⁻⁵
- Z peak [60-120] ~0.5 mill events, 10% acc x eff
- ΔM as function of mass

Also search for excess. LEE by bkgr-only pseudoexperiments

 Highest local significance at M=963 GeV is 2.4 going down to 0.3 when including LEE

model	exclude mass (GeV/c ²)
SSM Z'	2120
Z'_{Ψ}	1805
RS Grav $(k/M_{pl} = 0.1)$	1950
RS Grav $(k/M_{pl}) = 0.05$	1630

Exclusion limits

μμ

CMS PAS EXO-11-019

Same strategy as electrons adapted to muon channel. $R_{\sigma} = \text{ratio of } x \sec Z' / Z$

Limit input:

- Exponential bkgr shape
- #Z from pre-scaled trigger
 ~700, 27% acc x eff
- ΔM as function of mass, lower for muons

Excess search:

Highest local significance at M=1004 GeV at 1.2 which reduces to -0.7 when incl. LEE

Combined Exclusion Limit 95% C.L.

CMS PAS EXO-11-019

RS graviton → Jet + MET

CMS PAS EXO-11-061

RS graviton $G^* \to ZZ \to q\overline{q}\nu\overline{\nu}$ with boosted Z yielding signal of jet + MET Search is signature oriented, RS model serves as a benchmark model

- Trigger: jet + MET (fully efficient for p_T>200 GeV, MET>300 GeV)
- Signal: single jet (particle flow jet, M_{inv} ~ Z) and MET

Use correlation $m_J - M_T(j-MET)$ to suppress SM background

RS graviton → Jet + MET

95% C.L. exclusion limits
Systematic uncertainties ~5% (4% PDF, 1% JES, 3% MET)

m_G = Mass of lightest Graviton excitation

Signature: high energy lepton and "nothing else"

Analysis 1) no interference with SM W (right-handed W'). Signal samples generated individually with PYTHIA6. Limit = $f(m_{W'})$

Analysis 2) including W-W' interference. Signal samples are generated with Madgraph as W+W' \rightarrow requires M_T threshold. Cross section limit as function of MT threshold.

W'→Iv Signal (Pythia)

Strategy for all previous searches in ly channel

For experimental search:

- Assume SM-like couplings
 (+ tb-channel), ~8% per channel
- SM-like coupling strength $g'/g_{SM} \sim 1$
- Impact of detector resolution.

Channels: $W' \rightarrow ev$ and $W' \rightarrow \mu v$

W´→dijets see hadronic talk

	0 000	1000 1000 2000
M(W') [TeV]	NNLO xsec x BR W´→Iv	# Events for 4/fb full MT
1.0	0.88 pb	3520
1.5	0.095 pb	380
2.0	0.0135 pb	54
3.0	0.00071 pb	2.8

Analysis Cuts

Single lepton trigger with increasing p_T threshold. Common offline p_T cut. Kinematic cuts in addition to e/mu selection:

- Only 1 lepton with $p_T>45$ GeV or high quality electron with $E_T>85$ GeV.
- $0.4 < p_T/MET < 1.5$
- $\Delta \phi(p_{T}, MET) > 2.5$

Analysis also possible with only the lepton signal, ~10% less sensitivity

Backgrounds

CMS PAS EXO-11-024

Methods:

 Fit to data. Fit lower M_T sideband (M_T ~200 – 650 GeV) with different functions and varying sideband width. Uncertainties: from variations + extrapolation uncertainty + fit errors.

Fit full M_T distribution (up to 2500 GeV) with simulation. Normalization from data. Uncertainties from fit.

W' ->ev with full 2011 dataset 4.7/fb

MS PAS FXO-11-024

Average signal efficiency ~80% including ~90% geometrical acceptance

W' $\rightarrow \mu\nu$ with full 2011 dataset 4.7/fb

CMS PAS EXO-11-024

21

ivit > [GeV]	600	700	800	900	1000	1100	1200	1300
Data	62	36	16	11	6	4	3	2
SM expected from bkgr fit	67.9+/- 7.6	32.6+/- 5.0	17.0+/- 3.3	9.5+/- 2.3	5.6+/- 1.6	3.4+/- 1.1	2.2+/- 0.8	1.5+/- 0.6

Max. M_T Event (M_T^2 .4 TeV, $\mu\nu$)

MS PAS EXO-11-024

Uncertainty on muon p_T~70 GeV, on M_T~130 GeV

Exclusion Limits 95% C.L.

CMS PAS EXO-11-024

Single bin counting experiment

- Search window optimized for best expected limit for each mass point
- Optimization independently in each channel

Limits per channel ~2.4 TeV **Combining LLH** of both channels (W'->ev and $\mu\nu$) ~2.5 TeV

Systematic uncertainties on signal mainly related to detector performance. Largest contributions from mu and MET resolution (10% each, impact on

In orange: Interpretation in terms of UED

Including W-W' Interference

CMS PAS EXO-11-024

- If W' is left-handed, expect interference with SM W → modulation of transverse mass spectrum and impact on mass limits (~10%)
- First time simulated and considered in leptonic W' channels (Madgraph)

W'/ ρ_{TC} \rightarrow WZ \rightarrow 3 leptons + MET

Clear signature of three high momentum leptons (e,µ)

Channel (with public result): $WZ \rightarrow \ell^{\pm} \nu \ell'^{+} \ell'^{-} (\ell, \ell' = e, \mu)$

Recently added channels: $WZ \rightarrow Iljj$, $W\gamma \rightarrow e\nu\gamma$

$W'/\rho_{TC} \rightarrow WZ \rightarrow 3 leptons + MET$

For experimental search

- For W' complementary to lepton channels (e.g. fermiophobic models). Assume WZ as an additional channel.
- BR \sim 2x less than W' \rightarrow Iv. Further reduced by requiring leptonic decay of W,Z
- Signal generated individually in PYTHIA, no interference
- Same k-factors as $W' \rightarrow lv$
- "Technicolor Strawman Model" (TCSM)
- $M(\rho_{TC}) < 1 \text{ TeV}$
- $M(\rho_{TC}) \sim M(\pi_{TC}) \rightarrow BR(\rho_{TC} \rightarrow WZ) \sim 100\%$
- Γ < 5 GeV, ρ_{TC} much narrower than W'

Main background is SM diboson production. CMS diboson xsec measurement used for background prediction (spin-off).

Analysis Steps

Remove everything but SM WZ. Then add further cuts to suppress SM WZ.

- Reconstruct Z mass [60-120] for 1 Z
- Reconstruct W M_⊤
- Reconstruct M_{W7} . WZ accounts for 90% of bkgr. Good agreement data-MC
- To discriminate signal from bkgr:

$$H_T \equiv \sum p_T^\ell$$

- Search for bump in WZ mass distr.
- Optimize search window for W' masses

Exclusion Limits 95% C.L.

CMS PAS EXO-11-041

LQ

Signatures:

 2^{nd} generation: $\mu^{+}\mu^{-}$ + jets, $\mu \nu$ + jets

 3^{rd} generation: $v_{\tau}v_{\tau} + b$ -jets, using Razor variable

1st generation: e^+e^- + jets, e v + jets (released soon for 2011)

2nd Generation LQ, Strategy

MS EXO-11-028

Object reconstruction and event selection $\mu\mu$ jj channel:

- Muons as before, with $p_T>40$ GeV, separated by $\Delta R>0.3$
- Particle flow jets (see hadronic talk) with anti-kT algorithm R=0.5, pT>30 GeV
- Scalar sum S_T (μμjj) >250 GeV
- Optimize for each LQ mass:

Table 1: Optimization thresholds for different mass hypothesis of the $\mu\mu jj$ signal.

M_{LQ2} (GeV)	250	350	400	450	500	550	600	650	750	850
$S_T^{\mu\mu} > (\text{GeV})$	320	450	520	610	640	740	770	850	850	850
$M_{\mu\mu} > (\text{GeV})$	100	110	140	140	140	140	140	140	110	110
$min M(\mu, jet) > (GeV)$	70	130	150	170	260	350	350	350	510	510

Event selection $\mu\nu jj$ channel where different from above:

- MET>45 GeV. Veto events with 2nd muon or electron.
- MET separated from leading jet by $\Delta \phi > 0.5$ and from muon by $\Delta \phi > 0.8$

Table 2: Optimization thresholds for different mass hypothesis of the $\mu\nu jj$ signal.

M_{LQ2} (GeV)	250	350	400	450	500	550	600	650	750	850
$S_T^{\mu\nu} > (\text{GeV})$	440	540	600	730	740	870	960	910	930	960
$E_{\mathrm{T}}^{\mathrm{miss}} > (\mathrm{GeV})$	90	125	135	145	190	195	185	160	175	175
$M(\mu, \text{jet}) > (\text{GeV})$	120	280	310	310	380	380	350	510	510	510

eµjj for ttbar background (emu method see Z´)

After Final Selection 2/fb

CMS EXO-11-028

Main background after selection Z+jets and ttbar

Exclusion Limits 95% C.L. 2/fb

MS EXO-11-028

Statistical analysis using CLs modified frequentist approach Syst. Uncertainties on $\mu\mu jj$ ~28% (dominated by bkgr modelling). In $\mu\nu jj$ channel ~30% (mainly JES)

3rd Generation LQ

Signal: LQ LQ \rightarrow v v b b = 2 b-jets and MET

- Jets reconstructed with anti-kT (R=0.5). Forcing them into two "megajets" with E_{i1} and E_{i2} taking the combination where M_{inv} is minimal.
- Include b-tagging ("track counting high efficiency")
- Define dimensionless Razor kinematic variable M_R incl. MET (PF MET) without assumptions on MET shape or details of decay chain.

Reduce QCD by R>threshold. For signal max.R=1 and distribution peaks

~0.5, while QCD peaks ~0.

Razor dimensionless ratio

$$R = \frac{M_T^R \equiv \sqrt{\frac{E_T^{\prime}(p_T^{j1} + p_T^{j2}) - E_T^{\prime} \cdot (\vec{p}_T^{j1} + \vec{p}_T^{j2})}{2}}}{M_R \equiv \sqrt{(E_{j_1} + E_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2}}$$

 \rightarrow Set threshold on R²>0.25 (and higher) and M_R>400 GeV

Define "boxes" of

- MU or ELE: with one loose lepton with $p_T > 20$ GeV, $M_R > 400$ GeV and plus 2 jets with p_{τ} >60 GeV $R^2 > 0.14$
- HADRONIC: without leptons, $M_R > 400$ GeV and $R^2 > 0.2$
- Use lepton boxes for background determination and control regions
- Shapes for R, M_R for main backgrounds (heavy flavor QCD, tt) from data

Search signal in Hadronic with R²>0.25 (and increasing for larger LQ masses) and at least 2 b-tagged jets and no leptons

LQ3 n	nass R/M_R	Expected Number of Events	Observed Number of Events
	$M_R > 400, R^2 > 0.25$	326.98 ± 30.98	295
>330	$M_R > 400, R^2 > 0.30$	195.49 ± 25.58	172
>340	$M_R > 400, R^2 > 0.35$	121.88 ± 21.51	107

$M_{LQ}[GeV]$	Signal Efficiency
200	0.64 ± 0.08
250	1.85 ± 0.22
280	3.04 ± 0.36
320	5.29 ± 0.62
340	4.96 ± 0.58
450	9.64 ± 1.11
600	11.38 ± 1.32

Exclusion Limits 95% C.L.

CMS EXO-11-030

Largest uncertainties from b-tagging (~10%). Signal PDF 3.5% to 26% (depending on LQ mass)

SUMMARY

Many searches for new heavy resonances beyond SM (Z', RS, W', LQ) ongoing in CMS.

No indications for new physics yet...

	95% C.L. exclusion	Channel
Z' _{SSM}	2.3 TeV	ee + μμ
Ζ΄ _φ	2.0 TeV	ee + μμ
W´	2.5 TeV 1.2 TeV	ev + $\mu\nu$, WZ \rightarrow leptons
G _{KK}	2.1 TeV (c=0.1)	ee + μμ
$\rho_{\text{TC}} \; \text{TCSM}$	0.7 TeV	WZ
LQ 2 nd GEN	0.6 TeV(β =1), 0.5(β =0.5)	μμjj, μνjj
LQ 3 rd GEN	0.35 TeV (β=0)	ννjj

Projections for 2012: increase to 8 TeV and roughly tripling the statistics.