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Do any four problems. Each problem is worth 25 points. 

Start each problem on a new sheet of paper (because different 

faculty members will be grading each problem in parallel). 

 

Be sure to write your Qualifier ID (“control number”) at the top of 

each sheet — not your name! — and turn in solutions to four 

problems only.  (If five solutions are turned in, we will only grade 

# 1 - # 4.) 

 

At the end of the exam, when you are turning in your papers, 

please fill in a “no answer” placeholder form for the problem that 

you skipped, so that the grader for that problem will have 

something from every student. 

 

You may keep this packet with the questions after the exam. 

 



Problem II.1

Consider a free electron (non-relativistic) of mass m and charge e in three-dimensions, with
Cartesian coordinates (x, y, z). The electron is subject to a magnetic �eld in the z direction,
B = Bẑ and a potential V (z) =∞ for |z| > a and V (z) = 0 for |z| ≤ a.

(a) [10 points] Write down the Hamiltonian in Landau gauge, A = (0, Bx, 0). Show that
the Schrödinger equation separates, and that the energy eigenstates are determined
by wave functions of the form Ψky ,n,n′(x, y, z) = eikyyχn(x)φn′(z), where n and n′ are
non-negative integers. Write down the energies of the eigenstates in terms of ky, n,
and n′.

(b) [5 points] Sketch the wave functions φn′(z) for n′ = 0, 1, 2. Discuss conditions under
which we can ignore the states with n′ > 0.

Consider now the case of a relativistic particle of charge e moving in the two-dimensional
x − y plane, subject to the same perpendicular magnetic �eld as above. The system is
described by the Hamiltonian:

H = σxv(px + eAx) + σyv(py + eAy), (1)

where p = ~
i
∇ are the momenta, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
are the

Pauli matrices, and v is the speed of the particle. This is an e�ective Hamiltonian for
valence electrons in graphene.

(c) [10 points] What are the energy levels of this system? [Hint: Write the wave function

as Ψ =

(
ΦA
ΦB

)
, and �rst solve for the square of the energy levels. The results of part

(a) above may be useful.].
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Problem II.2

Consider a particle of mass m moving in a spherically symmetric potential

V (r) =

{
−α

r
if r > R

− α
R

if r < R

(a) [4 points] Assuming V (r) is due to electrostatic interaction with the particle, describe
the distribution of charge that would give this potential.

(b) [8 points] The ground state wave function of the particle moving in the pure Coulomb

potential

V0(r) = −α
r

is
Ψ0 = A exp(−r/a).

Express A, a, and the energy of the state, E, in terms of m, α, and ~.

(c) [6 points] Consider the potential given in part (a) as a perturbation about the pure
Coulomb potential, and use �rst order perturbation theory to �nd the energy shift of
the ground state normalized to the ground state energy. There will be a radial integral

that you may leave unevaluated.

(d) [7 points] We will use asymptotic methods to do the above integral. Note, �rst, that
the exponential function controls the size of the integrand for di�erent values of r/a.

(i) Consider, then, the limit R << a. By examining the domain of the integration,
and then appropriately approximating the exponential in that domain, evaluate the
integral in this limit. What is the relative energy shift? Is perturbation theory valid?

(ii) Now, consider R >> a. Physically, in this limit, do you expect perturbation theory
to work? Explain. Regardless, by examining the size of the integrand for large r, and
then appropriately extending the upper bound of the integration, estimate the integral
(possibly using the integrals provided). Comment on the energy shift, and the validity
of perturbation theory in this limit.

Potentially useful:

∇2 =
1

r2

(
∂

∂r

)(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂r

)
+

1

r2 sin2 θ

∂2

∂φ2∫
dx x e−x = − (x+ 1) e−x∫

dx x2e−x = −
(
x2 + 2x+ 2

)
e−x
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Problem II.3

Consider inelastic scattering of light particles of mass M and electric charge e (say, muons)
on the hydrogen atom. The muons have high initial velocity vi, such that

vi �
e2

~
,

~
ma

,
~
Ma

, (1)

where m is the electron mass, and a the Bohr radius. The muons and the atom interact via
the Coulomb potential. Neglect recoil of the atom.

(a) [10 points] Derive a general expression for the di�erential cross section of scattering
with the excitation of the atom from the ground state |0〉 to a state |n〉 in terms of the
wave functions, ψ0(~r) and ψn(~r), and the energies, E0 and En, of these states. Here n
denotes all quantum numbers of the excited state.

Directions: Taking into account that the muons have high velocity, use the Fermi
Golden Rule to calculate the scattering rate. This approximation is analogous to the
Born approximation.

Useful formula: ∫
e−i~q·~r

|~r − ~R|
d3~r =

4πe−i~q·
~R

q2
(2)

(b) [8 points] Using your solution of Part (a), calculate the di�erential cross-section dσ/dΩ
of scattering on the hydrogen atom with its excitation from the 1s state to the 2s state.

Potentially useful:

ψ1s =
e−r/a√
πa3

ψ2s =
e−r/2a√

8πa3

(
1− r

2a

)
(3)

(c) [7 points] Using your solution of Part (b), calculate the total cross-section σt =∫
dΩ(dσ/dΩ) of scattering on the hydrogen atom with its excitation from the 1s state

to the 2s state. When calculating the integral, make a reasonable approximation taking
into account conditions (1).

3



Problem II.4

The wave-function for a spin-1/2 particle is written as a two-component spinor

Ψ(x) =

(
ψ↑(x)
ψ↓(x)

)
.

The time-reversal operator for this system is written as Θ = iσyK where K is the complex
conjugation operator. Consider the single-particle Hamiltonian

H = ap4 + bp3σx + cpσz − de−x
2

,

where x is the position operator, p is the momentum operator, and a, b, c, d ≥ 0 are constants.

(a) [8 points] By considering the action of the operators p, σx, σz and e−x
2
on a wave-

function Ψ(x) detemine whether each of these operators are even or odd (i.e. symmetric
or anti-symmetric) under time-reversal.

(b) [2 points] Use the symmetries of the operators in the last part to show that H is
symmetric (even) under time-reversal.

(c) [5 points] By considering the action of Θ on the wave-function Ψ(x) show that Θ2 =
−1.

(d) [5 points] (Kramer's theorem) Consider an energy eigenstate Ψn(x) with energy eigen-
value En. Show that Ψ′n(x) = ΘΨn(x) is an eigenstate with the same energy eigenvalue,
which is orthogonal to Ψn(x).

(e) [5 points] When a = 0, the eigenvalue spectrum has no bound states. For |x| � 1 (so
that the potential term e−x

2/2 can be neglected), its scattering states are essentially
those of a free particle

Ψp(x) = eipx/~
(
ψ↑
ψ↓

)
.

It is paired by Kramers' theorem with Ψ′−p(x) = ΘΨp(x), which is energetically degen-
erate with Ψp(x) but moving in the opposite direction. Calculate the matrix element
〈Ψ′p|e−x

2/2|Ψp〉 to show that the back-scattering rate vanishes according to Fermi's
Golden rule.
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Problem II.5

Consider a system of Nd electrons/m3, each of which can occupy either a bound-state level
with energy −εd (called a �neutral donor�) or a free-particle continuum state with energy
~2k2/2m (leaving behind an �ionized donor�), where m is the electron mass.

(a) [5 points] What are the occupancies N 0
d /Nd of neutral donors (singly occupied bound

states) and N+
d /Nd of ionized donors (vacant bound states), respectively, in terms

of reciprocal thermal energy β = 1/kBT and chemical potential µ? Be sure to take
degeneracy into account: there are two ways to get a neutral donor (spin up or down)
but only one way to have a vacant, positively charged donor.

(b) [2 points] Show that to get sensible behavior as T → 0 the chemical potential must
lie above −εd.

(c) [4+1 points] Now we consider the dispersion of continuum states. Show that the
density of states (per volume) G(ε) of the free-electron gas of the continuum can be
written G(ε) = Aε1/2, justifying the exponent 1/2. From dimensional arguments, what
are the units of A? For full credit (just one point, not worth the time if you do not
know), �nd the numerical factors in A.

(d) [3+3 points] i) Write an expression for the density of electrons in the continuum,
Nc. ii) What is the low-temperature limit of Nc, assuming µ < 0. Note that Γ(3

2
) =∫∞

0
x1/2 exp(−x)dx =

√
π/2.

(e) [3+4 points] i) Give the expression that determines the value of chemical potential
µ. ii) In the low-temperature limit, �nd an explicit solution for µ.
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