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Ph.D. PHYSICS QUALIFYING EXAMINATION - PART I

August 26, 2010 9am.-1pm.

Do any four problems.

Problems 1.1, 1.2, 1.4 and I 5 areeach worth 25 points.
Problem 1.3 Statistical Mechanics is worth 40 points.

Put all answers on your answer sheets.

Be sure your Qualifier ID Number is at the top right corner of each

sheet and turn in solutions to four problems only. If five solutions
are turned in we will grade # 1 - # 4.
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Problem 1.1

A bead of mass m slides without friction on a hoop of radius a that rotates with constant
angular velocity w about an axis perpendicular to the plane of the hoop and passing through
the edge of the hoop (see the Figure). The problem ignores both friction and gravity. The
angle § serves as the coordinate and measures the displacement of the bead from a fixed

diameter on the hoop.

(a) [5 points] In terms of the radius a, w and 6, what are the Cartesian coordinates, z(t)
and y(£), of the bead?

(b) [5 points] Find the kinetic energy T and the Langrangian L in terms of a, w and 4.
The following identity is useful: cos A cos(A + B) +sin Asin(A + B) = cos B.

(c) [5 points] Derive the equation of motion for the angle §(¢). Hint: Use the Lagrangian.

(d) [5 points] In the small angle approximation, solve for 6(¢). Assume that §(0) = A
and 6(0) = 0. What is the characteristic frequency?

(e) [5 points] The Hamiltonian is defined as H = fpg— L, with py(= 0L/88) the canonical
momentum. Find H in terms of the coordinate and canonical momentum. Is H a

constant of the motion?

‘wt
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Problem 1.2

In a modern application known as Plasmonics, an important role is played by surface waves.
These are electromagnetic waves with fields concentrated close to the interface between
vacuum and a medium such as plasma with relative dielectric constant €. The key to the
existence of these waves is the negativity of ¢, for a range of frequencies.

Consider a plane (y — z) interface separating two regions at z = 0 (vacuum for z < 0,
plasma entirely described by a dielectric constant € for z > 0). Let z be the propagation
direction of a wave along the surface and consider the interplay between the three components
of the electromagnetic field: B,, E,, and E,. Assume that all the other components are zero.
Assume that there is no variation in the y-direction and assume the time (t) and space
dependence of each component is of the form Re[f(z)exp(ikz —iwt)], where f(z) represents
the complex amplitude of any of the 3 nonzero fields, &k is the wavenumber, and w is the
frequency of the wave.

(a) [5 points] Given the space-time dependence as above, write down 3 equations that
relate the complex amplitudes of the fields B, E,, and E,.

(b) [5 points] Use these equations to show that complex amplitude B,(z) satisfies the
wave equation (d2/dz? — k* + ew?/c?)B, = 0, for appropriate € on either side of the
interface.

(c) [5 points] Find solutions to B, on either side of the interface such that they are
localized near the interface. For given w and ¢, what conditions on k& must be imposed
so that the waves may be localized?

(d) [5 points] Write down the boundary conditions that connect B, and E, across the
two sides of the interface. Suppose ¢ < 0. Use the two boundary conditions to find the
wave number k as function of |¢| and w.

(e) [5 points] For a plasma, the dielectric function is given by € = 1 —w2/w?, where wy is
the plasma frequency. Find w (eigenfrequency of surface wave) when k& — oo.
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Problem 1.3

Consider a binary alloy where each site of a lattice is occupied by an atom of type A or B.
(A realistic alloy might mix roughly half copper and half zinc to make S—brass.) Let the
numbers of the two kinds of atoms be N4 and Np, with Ny + Ng = N. The concentrations
are ng = Ny/N and ng = Np/N, and the difference is z = ny — ng. The interaction
energies between the neighboring atoms of the types AA, BB, and AB are €44, €pg, and
€ap, correspondingly.

(a)

(b)

(c)

(d)

(e)

[4 points] For a cubic lattice in three dimensions, how many nearest neighbors does
each atom have? In the rest of the problem, denote the number of neighbors as ¢ for
generality.

[6 points] Consider the system at a high enough temperature such that the atoms are
randomly distributed among the sites. Calculate the average interaction energy U per
site under these conditions. First, express U in terms of n4 and np, and then obtain
U(z).

In the rest of the problem, consider the case 2645 > €44 + €35 and also assume that
€44 = € = & for simplicity. In this case, sketch a plot of the function U(z) for
—1 < z < 1. Indicate locations of the extrema of U(z).

[6 points] Under the same conditions (where the atoms are randomly distributed
among the sites), calculate the configurational entropy S per site. Assume that
N4, Np > 1, so the Stirling approximation In(N!) = NInN — N can be used. First,
express S in terms of n4 and ng, and then obtain S(z).

Sketch a plot of the function S(z). What are the values of S at z = £17 For which
value of z is the entropy S maximal?

[6 points] Using the results of Parts (b) and (c), obtain the free energy per site
F(z,T) = U(z) — T'S(z), where T is the temperature. Notice that F(z) = F(—xz)
(because of the assumption €44 = €pp), which simplifies consideration.

Sketch F(z) at a high temperature and at a low temperature. Show that, at a high
temperature, F'(z) has one global minimum as a function of z. Show that, at a low
temperature, F'(z) has one local maximum surrounded by two minima, excluding the
boundaries at x = 1.

[6 points] A system tends to minimize its free energy F', subject to externally imposed
constraints. A binary alloy with a given z may stay in the uniform state, where
the atoms are randomly distributed among the sites, which is called the mized state.
However, it may also become unstable with respect to spontaneous segregation into
two phases with different values of z, if such a segregation decreases the free energy F.
This state is called unmized.

Using F(z) derived in Part (d), show that the uniform mixed state is stable at high
temperatures, but becomes unstable below a certain temperature 7,. Determine T,
and the value of z where this instability occurs.
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I.3 (Continued)

Hint: The system remains stable as long as d?F/dz? > 0 for all z. Determine at what
T and z this condition becomes violated.

(f) [6 points] For T' < T, the free energy F(z) has two minima at z; and z,. Obtain an
equation for z;(T) and z,(T"). This is a transcendental equation, so you don’t need to
solve it explicitly for z.

Consider in turn what happens to the binary alloy with a given value z if z < z,(T),
if 2;(T) < z < zo(T), and if zo(T) < x. Would the state of the binary alloy be mixed
or unmixed in these cases? For the unmixed state, what are the values of z in the two

phases?

What are the limiting values of z;(T) and z,(T') in the limit T — 0?7 Describe the
ground state of a binary alloy at T = 0. Does this state minimize the interaction
energy U, given that g9 < €457

(g) [6 points] For a given z, show that the binary alloy is in the mixed state for T' > T,(z)
and in the unmixed state for T < T.(x). Calculate T.(z) and sketch it. Indicate the
areas corresponding to the mixed and unmixed states on this sketch. Show that T, is
the maximal value of T,.

Hint: To obtain T.(z) use the results of Part (f). T.(z) is obtained from the same
equation as z1(T") and z,(T).
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Problem 1.4

Ultra-high-energy cosmic ray protons can lose energy by inelastic collisions with cosmic
microwave background (CMB) photons, producing pions: In this problem, we will only look
at the reaction p +v — p + 7°.

(a) [10 points] First, consider this reaction in the reference frame in which the proton is

(b)

()

(d)

initially at rest. What is the minimum (“threshold”) energy, E; that the photon must
have to produce a 7° by this reaction? (Express your answer in terms of my, and my,,
the masses of the proton and the pion, respectively.)

Hint: at threshold there is no relative motion between the final state particles, they
act like a single particle of mass My + My

[10 points] Now, consider the same reaction but viewed in the reference frame of
the interstellar medium, in which the proton collides with a CMB photon that has
energy Ecpyp. Assume that the collision is head-on and that Ecms < Et, so you may
calculate to first order in Egyp/E,.

What is the energy E, of the incoming proton in this frame? (Express your answer in
terms of the particle masses Myp, Mx, and Ecpyp.)

[2 points] Using your result from part (b), insert the actual masses of the proton and
pion (m, = 938 MeV/c?, m, = 135 MeV/c2), and a CMB photon energy Egyp = 1073
eV, to calculate E, in eV.

[3 points] This reaction is a way for ultra-high-energy protons to lose energy by
colliding with CMB photons, and your result in (c) gives an estimate of the lowest
energy (proton energy threshold) at which this energy loss can occur.

Actually, the average energy of a CMB photon is about 6 x 104 eV, less than what
was used in (c). Explain in one or two sentences why it is appropriate to use the higher
CMB photon energy Fopyp in calculating this estimate.

If protons with energies higher than the estimated threshold E, are detected at the
Earth, could these protons have come from very far away?
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Problem 1.5
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We will consider electromagnetic waves that propagate on a lossless transmission line that is
driven by an ideal alternating current generator. The voltage on the capacitor and current
through the inductor as functions of position z and time ¢ in an lossless transmission line
(shown schematically above) obey the Telegrapher’s Equations

g o o1 _ ov
5t ~ Bz ot Or

where Cj is the capacitance per unit length and L, is the inductance per unit length of the
transmission line.

and — L,

(a) [5 points] Derive the Telegrapher’s Equations by considering how the voltage and
current change with a distance Az along the line.

(b) [5 points] Derive a wave equation
2V _16%V
R
from the Telegrapher’s Equations and thus find an expression for the speed v of an
electromagnetic wave in a transmission line.

(c) [ points] Consider a right-going traveling wave solution to the wave equation for an
infinite line in the form V(z,t) = Vo,.ed@t=%2) I(z,t) = Io,e@—*2) and find a relation
between w and k. Calculate the ratio Z, = Vot+/Io+, which is called the impedance.
How is your answer changed for a wave traveling to the left?

(d) [5 points] An ideal ac voltage generator is connected at the origin to a semi-infinite
transmission line, which extends from z = 0 to z = co. Using the result of part (c), cal-
culate the power leaving the generator and entering the line. (If you had difficulty with
part (c), you may assume here that the impedance of the line Z is real.) Given that
there are no resistors causing dissipation in this ideal line, what are the implications
of a real impedance for the energy flow from the generator?

(e) [5 points] A transmission line extends from z = 0 to z = £, and a right-going wave
with current amplitude Iy, created by the ideal generator at r = 0, is traveling
along the line. The line is terminated at z = ¢ as shown in the Figure. Formulate a
boundary condition on the current I(£,t) at the end of the line and derive a relationship
between Ip_ and Ip,, where I;_ is the amplitude of the left-going wave that results
from termination of the line.



