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Ph.D. PHYSICS QUALIFYING EXAMINATION - PART 11

January 21, 2011 9am.-1pm.

Do any four problems. Each problem is worth 25 points.
Put all answers on your answer sheets.
Be sure your Qualifier ID Number is at the top right corner of each

sheet and turn in solutions to four problems only. If five solutions
are turned in we will grade#1 - # 4.
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Problem II1.1
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A quantum dot (see left figure showing a typical transmission electron microscope image
of the cross section of a cubic quantum dot) is a structure with dimensions small enough
that quantum mechanics plays an important role. Electrons are confined by the boundaries
of the quantum dot, and their energy spectrum becomes discrete. The simplest quantum
mechanical model for a quantum dot is the “particle-in-a~-box” (middle figure), which models
the quantum dot as a three-dimensional infinite potential well. Consider an electron with
mass m confined inside a cubic quantum dot of size L with the potential

(a)

(b)

()

(d)

(e)

0 for 0<Lu,y,2<L,
Vo(,y, 2) = { oo otherwise.
[2 points] Write down the time-independent Schrédinger equation and the boundary
conditions on the wavefunction for a single electron in the quantum dot.

[6 points] Calculate the energy eigenvalues and eigenfunctions for an electron confined
to this quantum dot. Sketch qualitatively the wavefunction of the ground state (i.e.
the state with the lowest eigenenergy) along the z direction, at y=2z=L/2.

[4 points] Design-a quantum dot whose characteristic frequency of emission due to
transition from the first excited state to the ground state is v = 1 THz. That is, obtain
the size L of the quantum dot that has this property. Give your answer for L in nm.
(F=1.05x 1073 Js; m = 9.11 x 10~%! kg; 1 THz = 10'? Hz)

[2 points] A scattering point defect inside the quantum dot can typically be rep-
resented by a repulsive § function potential. For simplicity, let us consider only a
one-dimensional infinite potential square well along z with a point defect located at
the center and producing the potential V; = Aé(z — L/2) (A>0), as depicted in the
right figure above.

Will the ground state energy increase or decrease after considering the effect of the
point defect? Please explain your response.

[9 points] In the presence of the point defect, derive an equation for the discontinuity
in the derivative of the wavefunction at + = L/2. Using this condition, derive a
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II.1 (Continued)

transcendental equation for the eigenenergies in the presence of the defect. (Do not
try to solve this transcendental equation.)

(f) [2 points] Sketch the wavefunction of the ground state with the point defect present
and compare with the result obtained in part (b).
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Problem II1.2

A quantum system has two low-lying energy states, a ground state |L) with energy Ey = 0,
and an excited state |U) with energy E; = €. There are no other relevant states. The system

is perturbed by an interaction Hamiltonian H' = M (IL) U+ |U) (L]), where M < £.

(a) [5 points] Write the total Hamiltonian for this system as a 2 x 2 matrix in the |L),
|U) basis and find its approximate energy eigenvalues \ry, and eigenstates, |L) and
|U) by lowest nontrivial perturbation theory.

(b) [4 points] Without calculating the exact eigenvalues, state the sum and the product
of the two ezact energy eigenvalues.

(c) [4 points] Now generalize this system to one whose unperturbed ground state is
two-fold degenerate at Ey = 0 with orthonormal ground states |L;) (i = 1,2). The
perturbation H' couples these to the |U) state with equal strengths M = (U|H'|L,) =
(U|H'|Ls). Write the 3 X 3 matrix for the total Hamiltonian H.

(d) [4 points] Without calculating the individual eigenvectors and eigenvalues, state the
sum and the product of the exact eigenvalues for the three exact eigenstates of H.

(e) [4 points] Calculste the eigenvalues and eigenstates, |L;) and |U/) corresponding to
the |L;) and |U) to leading order in M/E.

Hint: Use the symmetry of H under the exchange of basis vectors |L;) «— |L;) to
simplify your calculations.

(f) [4 points] What is the symmetry of each of the three eigenstates in (e) under the
|L1) «— |L2) exchange of the basis vectors?
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Problem I1.3

A beam of electrons is normally incident from vacuum onto a thin film deposited on a
substrate. The process can be modeled as a one-dimensional scattering problem involving
a potential barrier and a substrate, as shown in the figure. Electrons arrive from the left
(x < 0) with the energy E, and the barrier is between £ = 0 and £ = a with a constant
height V, > E. The potential to the right of the barrier (x > a) has a value V, such that
0 <V, <V, and we consider the case where V; < E < V.

(a)

(b)

(c)

(d)

()

[3 points] Write the general solution to the Schrédinger equation in the three regions
2<0,0<z<a,and z > a for the transmission problem. (Do not solve for the
coefficients of the various terms.)

[6 points] In order to simplify the solution, let us model the barrier as a delta function,
V(z) = Whé(x). Derive an equation for the discontinuity in the derivative of the
wavefunction at the delta-function potential.

[6 points] Using this condition, obtain the wavefunction with the energy E > V, for
the transmission problem in the potential

0 for z <0,
V(z) =¢ Woé(z) for z=0,
V., for > 0.

[6 points] Calculate the transmission coefficient I’ = jou: /jin, Where j is the probability
current density, and the subscripts refer to the probability density current past the
barrier at £ > 0 (out) and incident on the barrier at z < 0 (in).

[4 points] In order for this simple model to be a good approximation to the physical
setup, a number of assumptions and/or approximations have to be valid. Discuss one
approximation that might have to be corrected in dealing with a real-world experiment.



(a)

(b)

(c)

(d)
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Problem I1.4

5 points. Using your knowledge of classical electrodynamics, express the electric and
magnetic fields E(r,t) and B(r,t) in terms of the scalar potential A%(r,t) and the
vector potential A(r,t) (in the SI system of units).

Consider a solenoid with cross-section area S and a uniform magnetic field B inside
(no magnetic field outside of the solenoid). What are the values (in terms of B and S)
of the line integral § A - dr in the two cases: (i) for a closed loop winding around the
solenoid once, (ii) not winding around the solenoid.

Write down an expression (in terms of B and S) for the vector potential A(r) outside
of the solenoid.

3 points. Write the time-dependent Schrédinger equation for a particle with electric
charge e, mass m, and zero spin in arbitrary electric and magnetic fields expressed in
terms of the scalar and vector potentials A° and A.

5 points. Suppose the wavefunction U(r,t) is a solution of the Schrédinger equation
with the electromagnetic potentials A° and A. Consider another wavefunction U(r,t)
related to the first one by the phase transformation with an arbitrary phase p(r,t):

U(r,t) = D P(r, ). (1)

Show that wavefunction W(r, t) is also a solution of the Schrédinger equation but for
different potentials A° and A, and express A° and A in terms of A% A, and o(r,t).
Verify explicitly that the electric and magnetic fields E and B corresponding to A°
and A are the same as those corresponding to A° and A.

5 points. In the rest of the problem, let us omit the time variable ¢ and the scalar
potential A% and focus on the vector potential A(r). In some cases, it is convenient
to select (r) so that the transformed vector potential A vanishes, i.e., U (r) satisfies
the Schrédinger equation with A(r) = 0. In order to accomplish this, show that the
phase ¢() must be selected as follows

e r

o(r) —plro) = = | A()-dr, (2)

r

0

where 7’ is the variable of integration, 7, is an arbitrary reference point, and () can
be set to zero.

In general, the integral (2) may depend on the path of integration, so the phase p(r)
cannot be defined consistently. However, show that the integral (2) does not depend
on the path of integration within a simply-connected region of space if B = 0 there.

7 points. Consider a double-slit interference experiment illustrated in the figure on
the next page. Electrically charged quantum particles propagate from the source S to
the detector D at r = rp. They can propagate through either the left or right slit (L
or R), which are located symmetrically with respect to the S-D axis.
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First ignore the solenoid, i.e. consider the case where B = 0 everywhere. The amplitude
of the wave function ¥ = ¥ + ¥y can be written a sum of the two contributions, ¥,
and Vg, propagating through the left and right slits, respectively. By symmetry, at
the detector we can set ¥ (rp) = Yr(rp) = ¥y when B = 0.

Now, suppose the solenoid with a non-zero magnetic field B inside the solenoid (drawn
as @) and cross-section area S is placed between the two slits perpendicularly to the
plane of the page, as shown in the figure by the ®-decorated circle. There is no
magnetic field outside of the solenoid. In the presence of the vector potential A(r)
created by the solenoid, show that the two contributions to ¥(rp) due to propagation
through the left and right slits change to e ¥, and ¢*®¥, and find expressions for
the phases ¢, and g similar to Egs. (1) and (2).

Show that the obtained phase difference ¢ — ¢r does not depend on how A(r) is
chosen to characterize the magnetic field of the solenoid and express ¢ — ¢g in terms
of B and S. Does the phase difference depend on the particle attributes e and m and
on the distance between the slits?

Calculate the probability P = |¥(rp)|? of detection of the particles at the detector as

a function of the magnetic flux & = BS produced by the solenoid. Show that P(®) is
a periodic function and find the period of the function. Make a sketch of P(®).

Source S
Solenoid
Left slit L ) Right slit R
Q0
Detector D
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Problem I1.5

Consider a lossless 50/50 beamsplitter, which has two input ports and two output ports and
couples two spatial modes of light A and B. The light entering in mode A has a 50% proba-
bility of exiting in mode A and a 50% probability of exiting in mode B. The same applies to
the light entering in mode B. The beamsplitter can be implemented using a semitransparent
mirror, as schematically shown in the figure, but technical details of implementation are not
essential for this problem.

A (in\ / B (out)

Semitransparent mirror

B (in)/ \A (out)

We will study the quantum nature of the coupling between these two modes. The two-
mode photonic quantum state of the system can be described using the basis | N4, Ng), where
N4 and Np are the numbers of photons in modes A and B.

(a)

()

[6 points] First, consider the case of a single photon, where N4 + Ng = 1. Suppose a
single photon enters in mode B, so the input wavefunction of the system is |¢); = |0,1).
Write the output wavefunction of the system [i)), after the photon exits from the
beamsplitter using the basis of |0,1) and |1,0). (The wavefunction [¢), may contain
an overall phase factor and a relative phase factor, but you can set these factors to
unity by convention.)

[6 points] Mathematically, it is convenient to describe the state of N photons using
an effective angular momentum formalism (which is unrelated to the actual angular
momentum of the photons). Suppose we have N = N4+ Ng photons, and each photon
can be in one of the two states A or B. Argue that this system is mathematically
equivalent to a system consisting of N spins 1/2, each having the z-projection +1/2
or —1/2, with the total z-component of the effective angular momentum being m; =
(N4 — Ng)/2.

Because the photons are identical Bose particles, their wavefunction must be completely
symmetric with respect to their interchange. Show that this requirement implies that
the total effective angular momentum in the spin-1/2 description must be J = (N4 +
Ng)/2.

The mathematical advantage of the effective angular momentum formalism is that the
unitary evolution operator of the beamsplitter can be written as the rotation operator
U = et , Where J is the y-component of the effective angular momentum operator,
and 0 is an effectlve rotation angle.

[7 points] In the case of a single photon (N4 + Ng = 1), we find J = 1/2. Thus, the
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IT.5 (Continued)

evolution operator of the beamsplitter can be written as U = ¢=#%v/2, where o, is the
Pauli matrix acting on the effective two-level system in the basis [0,1) and |1, 0).

Write the operator I/ = e~#%v/2 explicitly as a linear combination of &, and the unity

operator I. Hint: Formally expa.nd the exponential function into a Taylor series and
take into account that & 0 = I, so that the even and odd terms of the expansmn series
can be conveniently separated

Determine the value of the effective rotation angle ¢ for the 50/50 beamsplitter. Hint:
When the operator U = ¢=%/2 is applied on the input state lv); = 10,1), it must
produce the output state [)), = U[t); that you found in Part (a).

(d) [6 points] The value of § found in Part (c) applies to any number of input photons.

For two photons, the effective angular momentum is J = 1, and the basis is |0, 2),
|1,1), and |2,0). For an input state |); = [1,1) with two photons in different modes,
determine the output state |1/),. What is the probability of finding the output state
|¥)o = |1,1) where the two photons emerge from the beamsplitter in different modes?

Hint: The angular momentum rotation matrix for J =1 is
X (1+cosb)/2 sinf/v/2 (1—cosf)/2

U = e = —sin0/\/§ cos sin 0/\/5
(1 —cos#)/2 —sin@/v2 (1+cosb)/2



