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Problem II.1

The interaction of a two-level atom with a single electromagnetic mode in an optical cavity
(“photon" for short, below) can be modeled using the so-called Jaynes-Cummings Hamil-
tonian:

H = ~ωâ†â+
~Ω

2
σz +

~g
2

(
â†σ− + âσ+

)
where ~ω is the energy of an optical photon, â† and â are the creation and annihilation
operators for the photon, Ω describes the energy splitting of the atom, g accounts for the
strength of the coupling between the atom and photon, and the operators

σz =

(
1 0

0 −1

)
, σ− =

(
0 0

1 0

)
, σ+ =

(
0 1

0 0

)
act only on the state of the atom. The energy difference between the excited state

(
1
0

)
and

the ground state
(
0
1

)
of the atom is ~Ω.

(a) [5 points] For this part only, assume that g = 0. Find all the eigenstates of the
atom-photon system and give their energies.

(b) [5 points] What is the effect of the term ~g
2

(
â†σ− + âσ+

)
in the Hamiltonian on an

eigenstate you found in part (a)? Clearly explain the physical meaning of this term.

(c) [5 points] Now consider the general case, g 6= 0. Show that the general ground state
is the same as the ground state found in part (a), and that the ground state energy
does not depend on g.

(d) [5 points] Assume that ω = Ω, and g is non-zero. Show that the two terms of the
Hamiltonian, ~ωâ†â+ ~ω

2
σz and ~g

2

(
â†σ− + âσ+

)
, commute.

(e) [5 points] Under the assumptions of part (d), and using the fact that the two terms
have simultaneous eigenstates, find the allowed energies and eigenstates of the system.

Useful remark: most of the eigenstates in part (a) are degenerate.

Useful Relations

[â, â†] = 1 â†|n〉 =
√
n+ 1 |n+ 1〉 â|n〉 =

√
n |n− 1〉



Problem II.2

A spinless particle of mass M and charge e moves in an attractive potential V (x, y, z) =
k
2
(x2 + y2 + z2). Let the three quantum numbers of this system be called nx, ny, and nz, and

let the natural frequency of the oscillator be called ω0.

(a) [3 points] What are the three lowest energy levels E0, E1, E2 and their associated
degeneracies?

(b) [8 points] Suppose a small perturbing electric field pointing in the x−direction of
magnitude Ex = E cos(Ωt), with Ω ≈ ω0, causes transitions among the various oscillator
states. Let n′x, n′y, and n′z specify the final state of the system. Calculate a matrix
element which is proportional to the transition amplitudes and that illustrates the
selection rules on the quantum numbers.

(c) [10 points] Suppose the particle is in the ground state at time t = 0. The perturbation
will cause a transition into which of the first excited states? Calculate the nonzero
amplitude for a transition into this state at later times, to first order in E .

(d) [2 points] Calculate the probability for a transition to a first excited state, keeping
only the most important term in the expression for the amplitude.

(e) [2 points] What is the condition on the electric field strength for the validity of the
perturbative calculation of the transition rate?

Formulae:

â =

√
mω0

2~

(
x̂+

i

mω0

p̂

)
(1)

â† =

√
mω0

2~

(
x̂− i

mω0

p̂

)
(2)

â|n〉 =
√
n|n− 1〉 (3)

â†|n〉 =
√
n+ 1|n+ 1〉 (4)
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Problem II.3

The amplitude for scattering of a quantum particle from a spherically symmetric potential
can be expressed in terms of partial waves as

f(θ) =
1

k

∞∑
`=0

(2`+ 1)eiδ` sin δ`P`(cos θ)

where k is the particle wave-number.

(a) [2 points] Explain what is meant in quantum mechanics by the phase shifts produced
by a spherical elastic scatterer and why these are sufficient to specify the scattering
properties completely.

(b) [2 points] For the case where the potential vanishes outside of a radius R, argue that
for incident particles of wave number k, only partial waves that satisfy ` ≤ kR have
significant contributions to the scattering amplitude.

(c) [2 points] Write down the condition for which the only significant scattering that
occurs is in the s-wave.

(d) [8 points] Consider the s-wave scattering from a spherically symmetric finite quantum
well potential of constant depth V and radius R. What is the relationship between V ,
R, particle energy E, and δ0? For the special case, δ0 = π/2 what is the relation?

(e) [6 points]

(i) In the low energy limit, express the energy in terms of the potential depth, V ,
and radius, R.

(ii) In the s-wave approximation what is the scattering cross section?

(iii) What is the significance of δ0 = π/2?

(f) [5 points] What are the conditions for only s-wave scattering to be important with
the s-wave phase shift equal to π/2?
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Problem II.4

The idea in this problem is to determine selection rules for reactions based on Fermi-Dirac
statistics and angular momentum conservation. Consider an electrically neutral fermion
(spin-1/2 particle) χ0, which is its own anti-particle (such a fermion is called “Majorana").
Suppose it annihilates with another χ0 into an electron (e−) and a positron (e+). Further-
more, assume that the electron has helicity −1/2 and the positron has helicity +1/2, where
helicity h is defined to be the component of the spin of a particle along its direction of mo-
tion.
The goal is to prove by contradiction that the initial-state χ0 pair cannot be in s-wave, i.e.,
it cannot have orbital angular momentum, Linitial = 0.

(a) [5 points] Suppose on the contrary that the initial-state χ0 pair has Linitial = 0. Using
Fermi-Dirac statistics, determine the allowed value(s) of total spin Sinitial of this pair.

(b) [4 points] Using the above result, determine the allowed value(s) of the total angular
momentum Jinitial of the χ0 pair.

(c) [4 points] Now on to the final state. In the center-of-mass frame of the initial (and
therefore the final) state, the e−e+ are moving in opposite directions along z, although
they need not be exactly back-to-back (see figure). Given the above helicities of e−
and e+, determine the component of their total spin along their direction of motion,
Sz final.
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(d) [4 points] What is the value of orbital angular momentum Lz final along the z-
direction?

(e) [4 points] Using the above results, determine the total angular momentum Jz final
along the z-direction of motion of e−e+.

(f) [4 points] Therefore, what are the allowed values of total angular momentum Jfinal
of e−e+(not just its z-component)? Is s-wave for the χ0 pair then allowed?
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Problem II.5

Some of the most intriguing many body properties of bosons are dimensionality dependent.
Here you will examine a system of noninteracting bosons in two and three dimensions (d =
2, 3).

(a) [5 points] Consider N noninteracting spinless bosons of mass m in a volume V =
Ld. Assume periodic boundary conditions so that the single particle energy levels are
eigenstates of momentum ~k with energy ε(k) = ~2k2/2m. As a function of energy
find the density of states νd(ε) for d = 2, 3. What is the qualitative difference between
ν3(ε→ 0) and ν2(ε→ 0)?

(b) [6 points] Now assume a grand canonical description so that the average number
of particles, 〈N〉/V , is fixed and assume that the system size is large so that the
thermodynamic or bulk limit is applicable. Obtain integral expressions in d = 2, 3 for
the number density, n = 〈N〉/V , in terms of νd(ε) and the Bose-Einstein distribution
function

nBE(ε) =
1

e(ε−µ)/kBT − 1
, (5)

with µ the chemical potential. What is the maximum value of µ? At fixed temperature
is n(µ) increasing or decreasing as µ→ µmax?

(c) [8 points] In d = 3, show that at fixed temperature n(µ) increases to a finite limit,
nc, as µ → µmax. In terms of n obtain an expression for the critical temperature, Tc,
where this occurs. What happens when n > nc or T < Tc?

(d) [2 points] Suppose you could measure the momentum distribution in a d = 3 Bose
gas. What is the experimental signature in the momentum distribution of the critical
temperature defined in (c)?

(e) [4 points] In d = 2 determine nc. What is the corresponding critical temperature?
Compare and contrast the momentum distributions in two and three dimensions.

Useful integral:

ζ(3/2) =
4√
π

ˆ ∞
0

dx
x2

exp(x2)− 1
= 2.612...
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