UMD CMNS Physics S1 Color

Tiny Diamonds Could Enable Huge Advances in Nanotechnology

Nanomaterials have the potential to improve many next-generation technologies. They promise to speed up computer chips, increase the resolution of medical imaging devices and make electronics more energy efficient. But imbuing nanomaterials with the right properties can be time consuming and costly. A new, quick and inexpensive method for constructing diamond-based hybrid nanomaterials could soon launch the field forward.

University of Maryland researchers developed a method to build diamond-based hybrid nanoparticles in large quantities from the ground up, thereby circumventing many of the problems with current methods. The technique is described in the June 8 issue of the journal Nature Communications.

Read More

Disorder Grants a Memory to Quantum Spins

Nature doesn’t have the best memory. If you fill a box with air and divide it in half with a barrier, it’s easy to tell molecules on the left from molecules on the right. But after removing the barrier and waiting a short while, the molecules get mixed together, and it becomes impossible to tell where a given molecule started. The air-in-a-box system loses any memory of its initial conditions.

The universe has been forgetting its own initial state since the Big Bang, a fact linked to the unrelenting forward march of time. Systems that forget where they started are said to have thermalized, since it is often—but not always—an exchange of heat and energy with some other system that causes the memory loss. For example, a melting ice cube forgets its orderly arrangement of water molecules when heat from its surroundings splits the cube’s crystal bonds. In some sense, the initial information about the ice cube—the structure of the crystal, the distance between molecules, etc.—leaks away.

The opposite case is localization, where information about the initial arrangement sticks around. Such a situation is rare, like an ice cube that never melts, but one example is Anderson localization, in which particles or waves in a crystal are trapped near impurities. They tend to bounce off defects in the crystal and scatter in random directions, yielding no net movement. If there are enough impurities in a region, the particles or waves never escape.

Read More

Quantum Cycles Power Cold-atom Pump

The idea of a pump is at least as old as the ancient Greek philosopher and scientist Archimedes. More than 2000 years ago, Archimedes allegedly invented a corkscrew pump (link is external) that could lift water up an incline with the turn of a handle. Versions of the ancient invention still bear his name and are used today in agriculture and industry.

Modern pumps have achieved loftier feats. For instance, in the late 1990s, NIST developed a device that could pump individual electrons, part of a potential new standard for measuring capacitance (link is external).

While pumps can be operated mechanically, electrically or via any other source of energy, they all share the common feature of being driven by a periodic action. In the Archimedean pump, that action is a full rotation of the handle, which draws up a certain volume of water. For the NIST electron pump, it is a repeating pattern of voltage signals, which causes electrons to hop one at a time between metallic islands.

But physicists have sought for decades to build a different kind of pump—one driven by the same kind of periodic action but made possible only by the bizarre rules of quantum mechanics. Owing to their physics, these pumps would be immune to certain imperfections in their fabrication.

Read More

Space Mission First to Observe Key Interaction Between Magnetic Fields of Earth and Sun

Most people do not give much thought to the Earth’s magnetic field, yet it is every bit as essential to life as air, water and sunlight. The magnetic field provides an invisible, but crucial, barrier that protects Earth from the sun’s magnetic field, which drives a stream of charged particles known as the solar wind outward from the sun’s outer layers. The interaction between these two magnetic fields can cause explosive storms in the space near Earth, which can knock out satellites and cause problems here on Earth’s surface, despite the protection offered by Earth’s magnetic field.

Read More


Experiments at the LHC are once again recording collisions at extraordinary energies

After months of winter hibernation the world’s most powerful particle accelerator is once again smashing protons and taking data. The Large Hadron Collider will run around the clock for the next six months and produce roughly 2 quadrillion high-quality proton collisions, six times more than in 2015 and just shy of the total number of collisions recorded during the nearly three years of the collider’s first run.

Between 2010 and 2013 the LHC produced proton-proton collisions with 8 teraelectronvolts of energy. In the spring of 2015, after a two-year shutdown, LHC operators ramped up the collision energy to 13 TeV. This increase in energy enables scientists to explore a new realm of physics that was previously inaccessible. Run II collisions also produce Higgs bosons – the groundbreaking particle discovered in LHC Run I – 25 percent faster than Run I collisions and increase the chances of finding new massive particles by more than 40 percent.

During this run, University of Maryland physicists will continue looking for new particles, including those that make up dark matter. Although the nature of dark matter and its counterpart, dark energy, remain a complete mystery, taken together they make up a total of around 95 percent of the universe.

The signature that will indicate the dark matter particle is known as missing transverse energy. UMD physicists are very familiar with this measurement, as they are a leading institution in the missing transverse energy group of the LHC’s Compact Muon Solenoid (CMS) detector.

Members of the Maryland group will also study collisions of nuclei with the CMS detector as well as the details of the interactions of the particles responsible for the sun’s energy. UMD physicists will also harness the LHC to investigate the origin of matter-antimatter asymmetry in the universe. When the Big Bang created matter, it also created an equal quantity of antimatter, made up of particles with identical mass but an opposite electrical charge. For as-yet unknown reasons, antimatter is no longer common in the universe, but can be recreated in particle accelerators such as the LHC.

UMD’s Hassan Jawahery leads a group that will use the LHCb detector to study the “beauty” or “bottom” quark— hence the “b” in the detector’s name. The collider will also produce the antimatter counterpart to the beauty quark. Comparing the properties of these two complementary particles could reveal laws of nature that treat matter and antimatter differently.

Key members of the University of Maryland LHC Team are available to comment on their work:
Drew Baden, Chair and Professor
Alberto Belloni, Assistant Professor
Sarah Eno, Professor
Nicholas Hadley, Professor
Hassan Jawahery, Distinguished University Professor and Gus T. Zorn Professor
Alice Mignery, Professor
Andris Skuja, Professor