In Memoriam

It is with much sadness that the Department of Physics announces the passing of several members of our community. 

  • Gerald Abrams (Ph.D., '67), who spent most of his career at Lawrence Berkeley National Laboratory, died on March 31, 2020.
  • Nick Chant, who researched nuclear physics and served as the department's graduate director, died on October 15, 2021.
  • Thomas Ferbel, a high energy physicist who held UMD appointments since 2013, died on March 13, 2022
  • Lavonne Dragt, wife of Prof. Emeritus Alex Dragt, died on November 12, 2021.
  • Charles S. Dulcey Jr (Ph.D., 1982), who worked as a research physicist at the Naval Research Laboratory, died on Dec. 30, 2021
  • Michael Fisher, whose many honors included a USM Regents Professorship, died on November 26, 2021.

Growing into a Physicist at UMD

Physics can sometimes come across as the business of cold, calculating geniuses. But it can often be joyful, fun, competitive, engaging and more. Physicists are normal people and each of them has a unique and evolving relationship with their discipline. 

University of Maryland physics graduate student Michael Winer has had a relationship with physics—and physics at UMD in particular—since he was a kid. He first came to UMD as a high school student pursuing his competitive spirit when physics was a fun challenge. Then over time, physics became something more nuanced for him. Now, he has returned to UMD to pursue physics as a career and is also helping introduce the joys of physics to a new generation of bright young minds.

As a kid growing up in Maryland, Winer didn’t have an innate passion for physics. But he did have mathematical talent and a competitive streak. Before getting into physics, he started participating in math competitions when a family friend roped him into a middle school math competition.Michael Winer. Credit: Jess WinerMichael Winer. Credit: Jess Winer

“It was the best thing I've ever been badgered into,” Winer said. “I really liked it, but unfortunately I was not the best at math. So I had to sort of differentiate myself if you will and become the physics guy.”

Winer’s math skills led him to attend Montgomery Blair High School in Silver Spring, Maryland, which has a magnet program that offers accelerated courses in science, mathematics and computer science. There, he got his first taste of physics competitions. 

The tests that make up the U.S. Physics Olympiad were the most challenging Winer had ever taken, but his success on the tests in 10th grade—and then again in 11th grade—brought him to nearby UMD where he met several other promising young physics students from across the country. Each year (excepting virtual camps due to COVID-19) UMD hosts students at a training camp where they study physics and have a chance to make the U.S. International Physics Olympiad (IPhO) team.

“In 10th grade, I was really just happy to be there, and it was probably one of the best weeks of my life,” Winer said. “I was just enjoying basking in the glow of all these brilliant people and having all these interesting discussions and learning all these things. And then in 11th grade, I was much more focused on being one of the brightest kids there, making International Physics Olympiad, and then trying to get a gold medal at the International Physics Olympiad.”

In 10th grade, he also took the online course Exploring Quantum Physics with Victor Galitski, a Chesapeake Chair Professor of Theoretical Physics in the Department of Physics at UMD and a Fellow of the Joint Quantum Institute. Thanks to his positive experience with those two opportunities, Winer ended up reaching out to Galitski and arranging to work on a research project under his mentorship.

He studied how phonons—the quantum particle of sound—interact with electrons, a topic that is essential to understanding what makes superconductors work. That research experience was a radically new experience for Winer. 

He said that he likes to warn young people that research is a completely different beast from what they might be used to from homework or student competitions. 

“There are all sorts of differences,” Winer said. “Maybe you'll be able to solve this in two hours, maybe this will take 200 years, no one knows. And that's a lot of ambiguity, you don't know what you need to know, and you are not just allowed to—but almost always sort of required to—change the question as you're going. It's a completely different experience.” 

That early experience provided inspiration, and by working alongside graduate students, he got a glimpse into the future he is now living.

“By far the most valuable thing was not actually the research but sitting in a room full of grad students,” Winer said. “Sitting in a room with grad students, I think, gives you an insight into academia that just doing physics doesn't. I think you would expect it to sort of destroy the romanticized version I had in my head, but it did not. In fact, to this day, watching other people do physics is very motivating to me and reminds me how much I love doing physics.”

After this first experience with physics research, his passion for physics started yielding tangible rewards. In his sophomore year, he earned a silver medal at IPhO. And then after another summer working with Galitski, he won a first-place medal and $150,000 in the Intel Science Talent Search as a high school senior. 

“Both of those were very, very happy for me,” Winer said. “I did not think I would do well at the Intel contest and was wrong about that. What's interesting is I cared so much about Physics Olympiad. I spent years and years and years dreaming about Physics Olympiad whereas this research prize really just fell in my lap. Like, at no point in my life until it was announced that I had won did I think I would win.” 

After graduating high school and studying physics at MIT, Winer has returned to UMD as a graduate student to tackle much more substantial research. He is working on theories that describe some of the complex physics that play out inside of materials. Working under the mentorship of Galitski and Brian Swingle, an adjunct assistant professor of physics at UMD who is also an assistant professor at Brandeis University, Winer is studying spectral statistics—the distinctive signature that the energy levels of quantum objects collectively imprint on observable properties—in chaotic quantum systems. While it takes much longer to solve the problems he is tackling now, he said he still finds the same joy in learning new physics as he did in his first research experience and studying for the IPhO.

At UMD, Winer has helped mentor two Montgomery Blair students. He said that in addition to helping the students, these experiences have helped him understand his relationship with his own advisors by being on the other side of the table.

He has also given back to the IPhO program by being a coach who both helps write the tests used to select participants and also mentors the selected students. 

Winer said that while his participation as a student in the IPhO was probably helpful in getting to his current position, he thinks that an important part of the event is that it gives kids an opportunity to have fun. 

“Like a sailing club doesn't, you know, justify itself as creating passion for the all-important sailing industry, right?” Winer said. “They just say, ‘The kids are having fun. Let's help some kids have fun.’ And I think we can't forget that. Like, I was a kid, I had a lot of fun. It's good when kids have fun.”

Winer’s advice to any high school students considering studying physics is to try participating in the Physics Olympiad and, if possible, to look for research opportunities with professional physicists.

“You hopefully will discover you like it or at least have the potential to like it,” Winer said. “Then you will grow as a scientist over the course of that and over the course of your college research, and over the course of your grad school research.”

Story by Bailey Bedford

Related news stories: https://www.washingtonpost.com/local/education/montgomery-physics-phenom-tried-not-to-faint-as-he-won-national-award/2015/03/15/550d9bc4-c7e4-11e4-b2a1-bed1aaea2816_story.html

Faculty, Staff, Student and Alumni Awards & Notes

We proudly recognize members of our community who recently garnered major honors, began new positions and more.

Faculty and Staff 
  • Ruba Abukhdeir joined the department as the Director of Business and Finance. 
  • Kaustubh Agashe, Mohammad Hafezi and Arpita Upadhyaya were elected Fellows of the American Physical Society.
  • Jesse Anderson retired on December 31 after 34 years with the department. 
  • Lea Bartolome received the department's Staff Excellence Award. 
  • Alessandra Buonanno received the Balzan Prize.
  • Sankar Das Sarma was named a highly cited researcher by Clarivate Analytics. He also wrote a commentary for Physics Today. He recently discussed the latest developments in topological phases in quantum computing at a Microsoft conference. 
  • Work by Jim Drake on the heliosphere was described in Phys.org.
  • James Ellsworth joined the department as assistant director for of procurement, inventory and receiving.
  • Sarah Eno was elected a Fellow of the American Association for the Advancement of Science. 
  • Manuel Franco Sevilla was named liaison between EF and Rare Processes and Precision Measurement group at Snowmass.
  • Victor Galitski was quoated in Physics magazine.  
  • Jim Gates received the 2021 AIP Andrew Gemant Award. He was also profiled in Symmetry Magazine.
  • Carter Hall was featured on the Department of Energy website regarding what his 2011 Early Career Award had meant to his research.
  • Donna Hammer was named a Society of Physics Students Outstanding Chapter Advisor. 
  • Eliot Hammer joined the chair's office as coordinator of administration.
  • Work by Anson Hook was described in Science Daily.
  • Ted Jacobson's idea of a black hole laser was discussed in PhysicsWorld.
  • Danae Johnson joined the department as a business manager.
  • Melanie Knouse received the department's Staff Excellence Award. 
  • Alicia Kollár received a Sloan Research Fellowship.
  • Wolfgang Losert received a Brain and Behavior Institute seed grant award.
  • Howard Milchberg, Daniel Woodbury (Ph.D., '20), Robert Schwartz wrote a Physics Today Quick Study showing how revisiting early experiments with new tech leads to pinpointing individual electrons in ambient gases. 
  • Rabi Mohapatra will retire on August 1, 2022.
  • Allen Monroe received the department's Staff Excellence Award. 
  • Johnpierre Paglione was named an Outstanding Referee of the Physical Review journals.
  • Naomi Russo received the department's Sibylle Sampson Award.
  • Jay Sau was named UMD co-Director of the Joint Quantum Institute.
  • Yasser Saleh joined the department as procurement coordinator.
  • Brian Straughn received the Lorraine DeSalvo Chair's Award for Outstanding Service.
  • Fred Wellstood will retire on April 1, 2022.
  • LaVita Williams joined the payroll office as a business service specialist.
 Students
  • Elizabeth Bennewitz, a graduate student working with Alexey Gorshkov, has been named a finalist for a 2022 Hertz Fellowship.
  • Yonatan Gazit and Yanda Geng received the Richard and Anna Iskraut Award.
  • Donovan Buterakos, Haining Pan, DinhDuy Vu won the Richard E. Prange Graduate Student Award.
  • Sagar Airen received the Kapo-Barwick Award.
  • Batoul Banihashemi, Yan Li, Braden Kronheim, Edward Broadberry, Jeremy Shuler, Subhayan Sahu, Saurabh Kadam, Nathaniel Fried received the Ralph Myers Award
Alumni
  • Vakhtang Agayan (Ph.D., '00) was named Chief Technology Officer of KMK Consulting
  • Beatriz Burrola Gabilondo (Ph.D., '10) was named an APS Equity, Diversion and Inclusion Fellow.
  • Laird Egan, (Ph.D., '21), was quoted in a Physics story on quantum error correction. 
  • Alexei Fedotov (Ph.D. ’97), received teh Dieter Möhl Medal in the field of beam cooling.
  • Salman Habib, Director at Argonne Lab's high energy division was a PhD student of mine (1988).
  • Ruth Kastner received a  Visiting Fellowship at the University of Pittsburgh's Center for Philosophy of Science.
  • Ying-Cheng Lai (Ph.D., '92) was named a Regents Professor at Arizona State University.
  • Thomas Mason, B.S. '89, physics; B.S. '89, electrical engineering  https://www.chemistry.ucla.edu/news/mason-group-research-featured-science-advances  
  • Elizabeth Paul (Ph.D., '20) and Matt Landreman published work on a twisty stellarator in Physical Review Letters.
  • Denjoe O'Connor (Ph.D. '85) is now the Director of Dublin Institute for Advanced Studies, the position Erwin Schrödinger held during World War II.
  • TC Shen (Ph.D. '85) is a professor of physics at Utah State University.
  • Chris Stephens (Ph.D. '86) is the director of the Center for Complexity Science at UNAM, Mexico City.
Book Marks

Victor Yakovenko's work in econophysics was discussed extensively in the book Anthill Economics.

Department Notes 
 
 
 

Nicole Yunger Halpern Ponders Quantum Mechanics, Thermodynamics, and Everything Else

There is a well-known saying, of disputed origin(link is external), that dissuades students and even working physicists from thinking too deeply about the meaning behind quantum physics. “Shut up and calculate,” it goes. Nicole Yunger Halpern, an affiliate of JQI and the newest Fellow of the Joint Center for Quantum Information and Computer Science (QuICS), was never one to abide by this mantra.

Instead, Yunger Halpern, who is also a physicist at the National Institute of Standards and Technology, brings a vast intellectual curiosity to physics, from tackling abstract theory to collaborating with experimentalists, all the while drawing distinct connections between diverse disciplines of physics. She also brings her research to life through writing, imbuing it with historical, philosophical, and even artistic context.Photo by John T. Consoli/University of MarylandPhoto by John T. Consoli/University of Maryland

Her self-titled research direction—at the intersection of quantum information theory and thermodynamics—is “quantum steampunk,” after the steampunk genre of literature, art and film that envisions a 19th century world where steam engines power futuristic gadgets, like flying boats and robots. Her book(link is external) of the same title is scheduled for publication in the spring of 2022. She will discuss it at the physics colloquium on Tues., March 29 at 4 p.m. in room 1412 of the John S. Toll Physics Building. 

Thermodynamics, developed largely in the 19th century, is the “steam” in Yunger Halpern’s research, merging with the futuristic science non-fiction that is quantum mechanics. Quantum thermodynamics explores how quantum mechanics can impact and enhance thermodynamic problems, such as channeling energy and heat to perform work, and it raises new questions about information transfer in the process. “What steampunk fans dream,” Yunger Halpern writes in her Ph.D. thesis(link is external), “quantum-information thermodynamicists live.”

On top of helping bridge the 19th and 21st centuries, Yunger Halpern brings the tools of quantum information thermodynamics to other disciplines. Her work on quantum scrambling(link is external) is relevant to black hole physics; her thermodynamic theories(link is external) straddle physics and chemistry; experimental realizations of her proposals have brought collaborations with condensed matter(link is external) and atomic, molecular and optical physicists(link is external); her studies of quantum mechanics have touched on information theory(link is external); her work on thermodynamics ventures into machine learning(link is external); and she’s even proposed an idea for quantum voting(link is external).

Yunger Halpern’s voracious appetite for ideas from diverse disciplines dates to her childhood in Florida. “I grew up reading basically all the time,” she recalls. “I would read while waiting for my parents to pick me up from school; while standing in line; and while in restaurants, waiting for food to arrive. I was interested in everything.”

As early as high school, thermodynamics caught Yunger Halpern’s eye. She remembers learning about entropy, a measure of disorder in a collection of particles, in a biology class. The second law of thermodynamics states that entropy, once it increases, can never go back down—a familiar concept to anyone who’s ever tried to stuff toothpaste back into the tube or unscramble an egg.

Some physicists believe that this irreversibility is what gives time its forward direction. “I’m fascinated by entropy,” Yunger Halpern says, “because it’s this abstract concept, quantified with a funny-looking function, but it has such important real-life implications.”

Yet, despite the early fascination with entropy and a high school physics class she loved, Yunger Halpern was still not willing to put on academic blinders after enrolling at Dartmouth College. “Two physics professors helped me design a major that enabled me to view physics from many perspectives,” she explains. “It was partway between the standard physics major and the create-your-own major.” The bespoke major included conventional physics courses combined with some math, philosophy and history.

It was a history of science class in her final term at Dartmouth that further pushed Yunger Halpern to make physics her primary focus, and to pursue graduate school. She was the only student in the class with a scientific background, and she noticed this gave her a different perspective on the course. “I couldn’t help noticing that I understood these topics more deeply than my classmates,” she says, “and I realized that I wouldn’t have been satisfied if I’d learned the material strictly at the level required for the history course.”

Similarly, she realized, she wouldn’t be satisfied if she refrained from studying a host of other topics—cosmology, field theory, etc.—at the level required of a physics student. “So, I was determined to remain a physics student—to study physics more deeply,” she says.

After completing her degree at Dartmouth, Yunger Halpern continued to follow a somewhat unconventional path. She spent a year as a research assistant at Lancaster University in England, followed by a one-year master’s program at the Perimeter Institute for Theoretical Physics in Waterloo, Canada. After starting a Ph.D. program at Caltech, she spent another semester as a visiting graduate student in Oxford, England.

It was during her master’s studies that Yunger Halpern had her first taste of combining quantum information theory with thermodynamics, under the guidance of then-postdoc Markus P. Müller and faculty member Robert Spekkens. They made use of quantum resource theories—a set of mathematical tools that look at quantum objects as resources that can be spent to accomplish a task—as a framework for thermodynamics(link is external).

Yunger Halpern reveled in the interdisciplinary nature of the work, as well as its real-world relevance. “That project was exactly the springboard that I’d sought to embark on research in quantum information theory and thermodynamics,” she says.

This set the course for her quantum steampunk career.

Propelled forward by her deepening passion, Yunger Halpern attended graduate school at Caltech under the mentorship of John Preskill, a giant in the field of quantum information science. “At the time, I was interested in a very theoretical, abstract flavor of quantum thermodynamics,” she explains. “Very few researchers in the United States supported it. But I told John what I wanted to do, and he said, ‘Ok. Do it.’ I felt that I’d have the freedom and support to undertake the research that I felt drawn to.”

This freedom brought her to a key insight(link is external) at the intersection of two seemingly disparate questions—how much work you have to do to push a collection of particles into a different configuration (like squeezing toothpaste into a travel-sized tube) and what happens when information is thrown into a black hole. Simply put, both processes depend crucially on the direction of time, like the toothpaste that won’t go back in the tube. Noticing this connection allowed Yunger Halpern to derive an equation relating quantum scrambling—the thing black holes are thought to do with information—to something that could be measured in the lab. Experiments realizing a simpler version of Yunger Halpern’s protocol were carried out(link is external), not inside a black hole, but in the lab of Kater Murch at Washington University in St. Louis.

Next, Yunger Halpern and her collaborators designed a truly steampunk invention(link is external): an analog of a steam engine that relies on an exotic quantum phase. This phase’s superpower is that it thermalizes very slowly or not at all, akin to an ice cube that stays cold on a warm summer day. It’s a collection of quantum particles that are kept in a box with a jagged and disorderly floor, creating a randomness that prevents the particles from freely bumping into each other and exchanging energy in a phenomenon known as many-body localization (MBL).

Drawing on ideas from her research at Perimeter, Yunger Halpern, with her collaborators, realized that a state that does not thermalize could be used as a resource. The engine, which they called ‘MBL-mobile’, is a four-stroke cycle that takes a collection of quantum particles in and out of the MBL phase to extract work.

At the beginning of her graduate career, alongside her research, Yunger Halpern committed to writing a blog post every month for Caltech’s blog Quantum Frontiers(link is external). This is a habit she’s kept to this day, having recently published her 100th post(link is external).

Through the blog, she’s managed to continue cultivating her lifelong love of writing. “I was writing stories as early as second grade,” she says. “The best physicists I’ve met explain their science in terms of stories colored by a few simple, basic equations, so writing stories about my physics regularly feels natural.”

Yunger Halpern’s blog posts touch on literature, history and anthropology from all over the world, drawing analogies and placing her work as a scientist into a larger context. “It provides a useful creative outlet,” she says. “Physicists value creativity, but there are some things that even we aren’t allowed to write in papers. I can write those things on the blog, which keeps my imagination in high gear and so enhances my physics.”

After Yunger Halpern moved on to a postdoctoral position at Harvard University, her writing landed her a feature story in Scientific American(link is external). Now, her new book, “Quantum Steampunk: The Physics of Yesterday’s Tomorrow,”(link is external) is about to hit bookstores nationwide. “The book is almost entirely nonfiction,” she says, “but each chapter begins with a snippet from an imaginary quantum-steampunk novel. I also worked with my editors and illustrator to bring out the steampunk aesthetic of quantum thermodynamics—not only in the explanations, but also in the figures and even in the fonts.”

Photo by John T. Consoli/University of MarylandPhoto by John T. Consoli/University of MarylandAt the University of Maryland, Yunger Halpern looks forward to forging new collaborations with senior researchers as well as training young scientists. “The people at Maryland—the colossal quantum and statistical-mechanics communities—certainly drew me. I have worked with Chris Jarzynski, who’s a wonderful scientist and a wonderful person, and I’ve visited the College Park campus several times over the years because I simply couldn't stay away from the research.”

She is also drawn to Maryland’s interdisciplinary structure, believing it will feed her insatiable drive to connect scientific disciplines. “I’m looking forward to making even more new connections,” she says.

Original story by Dina Genkina: https://jqi.umd.edu/news/nicole-yunger-halpern-ponders-quantum-mechanics-thermodynamics-and-everything-else