UMD Awarded $2 Million to Build a Quantum Biosensing Test Bed

Physics Professor Wolfgang Losert, Cell Biology and Molecular Genetics Professor Kan Cao, Chemistry and Biochemistry Professor John Fourkas, and Electrical and Computer Engineering Associate Professor Cheng Gong were awarded $2 million by the U.S. Air Force Office of Scientific Research to build a test bed to study how neural networks process information and develop new approaches to quantum computing and sensing inspired by the living brain. As principal investigator of this multidisciplinary and cross-institutional project, Losert will collaborate with both UMD faculty members as well as other academic and industry partners to better understand and recreate the brain’s unique capacity for learning and adapting quickly—abilities that far surpass traditional computer systems.Wolfgang LosertWolfgang Losert

“The human brain is remarkable in how efficiently it can learn and process information. For example, we only need to touch a hot stove once to learn not to do it again,” Losert explained. “But current artificial intelligence systems need more than just that. Typically, they require enormous amounts of data and computing power to learn new tasks through numerous rounds of trial and error.”

While traditional computers process information through individual components working in sequence, the brain distributes information across many networks of cells working in parallel. This fundamentally different approach allows for faster learning and adaptivity but with far less energy consumption than a computer. Losert and his team hope to identify the biological mechanisms behind this efficient method of learning in the brain.

For this research, a key focus is on astrocytes, a type of brain cell that makes up more than half of the cells in the human brain. Long considered mere support cells for neurons, astrocytes are now recognized as crucial to how the brain processes information. By engineering laboratory-based systems that incorporate both neurons and astrocytes, Losert’s team will closely observe how the two types of cells form living neural networks and react when exposed to various types of stress like ultrasound or electrical fields.

Recent discoveries by the neuroscientist on Losert’s team, assistant research scientist Kate O’Neill, and other researchers have already shown that astrocytes actively participate in brain signaling and may be essential to the brain’s ability to both learn and adapt to new situations quickly. Further observations could provide insights into how the brain maintains its performance under different conditions and may lead to more resilient forms of artificial intelligence (AI).

“Interestingly, one aspect that makes biocomputing so unique—the multitude of different signals in living neural networks, such as electro-magnetic, chemical and mechanical signals—also opens up another exciting aspect of our work. We can use living neural networks to test and improve quantum sensors for a range of biomedical applications,” said Losert, who is also an MPower Professor and interim associate dean for research in the College of Computer, Mathematical, and Natural Sciences with a joint appointment in the Institute for Physical Science and Technology.

Quantum sensors have the potential to measure minute physical changes like the presence of magnetic fields or electrochemical activity in cells in minimally invasive ways. Novel non-invasive biosensors could allow scientists and health care professionals to observe brain processes in patients that they couldn’t see before, potentially leading to better medical treatments and a more nuanced understanding of brain performance.

With this award, Losert’s team aims to bridge the gap between artificial and biological computing systems and help create new technologies that combine the best features of both.

“By understanding and replicating how brain cells work together, we hope to create more efficient and adaptable computing systems,” Losert said. “This project represents the start of a new paradigm in biocomputing that may help shape the future of both AI and neuroscience.”

###

The grant will also facilitate collaborations with researchers from the U.S. Air Force Research Library, the National Quantum Laboratory (QLab), Lockheed Martin, the National Research Council of Italy (CNR) and the University of Bari Aldo Moro.

Sasha Philippov Awarded 2024 Packard Fellowship

Assistant Professor Sasha Philippov has been named one of 20 members of the 2024 class of Packard Fellows for Science and Engineering. Sponsored by the David and Lucile Packard Foundation, the $875,000, five-year award for early-career researchers provides “flexible funding and the freedom to take risks and explore new frontiers in their fields of study,” according to the foundation.

Philippov is the seventh UMD faculty member—and the second from UMD’s Department of Physics—to receive this competitive award since its launch in 1988.

“I am delighted to see the recognition Sasha is receiving with the awarding of the Packard Fellowship,” said UMD Physics Chair Steven Rolston. “His outstanding work places our excellent plasma theory group at the center of multi-messenger astronomy, with multiple connections to efforts in physics and astronomy both within and beyond the university.”

Each year, the Packard Foundation invites 50 universities to nominate two faculty members for a Packard Fellowship, which is ultimately narrowed down to 20 recipients. Previous UMD awardees include Janice Reutt-Robey (chemistry and biochemistry) in 1990, William Pugh (computer science) in 1991, Victor Yakovenko (physics) in 1995, Victor Muñoz (formerly chemistry and biochemistry) and Sarah Tishkoff (formerly biology) in 2001, and Vedran Lekić (geology) in 2014.Sasha PhilippovSasha Philippov

Funding from the Packard Fellowship will enable Philippov to develop new computational codes capable of running on the world’s biggest supercomputers. In his research, Philippov uses computational astrophysics to study some of the most mysterious objects in the universe, including neutron stars and black holes. He is particularly interested in discovering how hot, magnetized gas—known as plasma—produces the light we see around exotic objects, such as the ring of light captured in the first image of a black hole in galaxy M87.

His new simulations would shed light on “how plasma shines around black holes,” as well as fast radio bursts—mysterious flashes of radio waves that are extremely bright and short-lived, lasting for mere milliseconds. Some of these extremely bright signals travel for billions of years before reaching Earth, but their exact origin remains an open question in astrophysics.

“Remarkable recent observational discoveries, including fast radio bursts and silhouettes of black holes, make it breathtaking and timely to work in this field,” Philippov said. “The common theoretical challenge to explaining stunning observations of neutron stars and black holes is understanding the behavior of relativistic plasma, the hot, magnetized, collisionless gas of charged particles producing the observed light under extreme conditions that we cannot explore on Earth.”

Simulations can complement images captured by the Event Horizon Telescope and other observatories, enabling researchers like Philippov to explore the physics of the highly energized electrons in plasma. He expressed gratitude to the Packard Foundation for supporting “high-risk, high-reward” research like the development of his new codes that could—if successful—yield much more realistic simulations.

“It could allow us to run three-dimensional kinetic simulations of black hole accretion, which we were not able to run before,” Philippov said.

Graduate students and postdoctoral researchers in Philippov’s lab will also play a hands-on role in developing this code, running and analyzing simulations, and constructing theoretical models of plasma phenomena.

Since joining UMD in 2022, Philippov has received a 2024 Sloan Research Fellowship, which provided him with $75,000 to study the production of neutrinos (weakly interacting particles) around black holes and magnetars (neutron stars with the strongest magnetic fields in the universe). He was also awarded a 2024 Thomas H. Stix Award for Outstanding Early Career Contributions to Plasma Physics Research for his “seminal contributions to the theory and simulation of collisionless astrophysical plasmas, especially compact objects.”

Although Philippov is excited to receive a Packard Fellowship, it is also bittersweet. Rolston and UMD Physics Professor Bill Dorland helped deliver the fellowship news to Philippov over a Zoom call last month, which ended up being the last time he and Dorland spoke.

Dorland, who was a mentor and friend to Philippov, died in September following a 20-year battle with chordoma, a rare cancer. In many ways, Philippov’s research will carry on Dorland’s legacy in computational plasma physics.

“Bill was a remarkable, kind and generous person. His passing left a giant void in all who had the privilege of knowing and working with him,” Philippov said. “He often mentioned that writing code is not just his job but a part of his very being. We will continue forging ahead in his memory.”

 

Original story by Emily C. Nunez: https://cmns.umd.edu/news-events/news/sasha-philippov-awarded-2024-packard-fellowship

Chacko Elected APS Fellow

Professor Zackaria Chacko has been elected Fellows of the American Physical Society. APS Fellowship recognizes excellence in physics and exceptional service to the physics community.

Chacko, who is a member of the Maryland Center for Fundamental Physics (MCFP), was cited for discovering two of the major theoretical scenarios for particle physics beyond the Standard Model — neutral naturalness and gaugino mediated supersymmetry breaking — and for inspiring experimental programs to test them.

Following his B.S. and M.S. degrees at the Indian Institute of Technology, Kharagpur, Chacko earned his Ph.D. in Physics at the University of Maryland in 1999, working with Markus Luty. While a graduate student at Maryland, he received the Michael J. Pelczar Award for Excellence in Graduate Study and was named an Outstanding Teaching Assistant.

He then held postdoctoral positions at the University of Washington and the University of California, Berkeley, before accepting the role of Assistant Professor at the University of Arizona. In 2007, he returned to the University of Maryland. He was promoted to Associate Professor in 2009 and full Professor in 2016. He has served on the department’s Priorities, Curriculum Review, and Graduate Admissions committees, and is currently a member of the editorial board of JHEP, the premier journal dedicated to elementary particle physics.

The primary focus of Chacko’s research is on proposing new theories that address the known problems of the Standard Model of particle physics which can be tested in current and future experiments. The work for which he received the award is related to a theoretical problem of the Standard Model, known as the “hierarchy problem”. The Higgs boson has a mass of order the weak scale, the mass scale of the force carriers of the weak interactions. However, in the Standard Model, quantum effects tend to make the Higgs many orders of magnitude heavier than the observed value. The fact that the Higgs is light then arises from a very delicate cancellation between completely independent effects, which seems extremely contrived.

An elegant class of solutions to the hierarchy problem involve extending the Standard Model to include new particles related to the known particles by a new symmetry of nature. The quantum effects of the new particles cancel against those of the Standard Model, explaining the lightness of the Higgs boson. Chacko was recognized for proposing two paradigms that realize this framework, gaugino mediated supersymmetry breaking and neutral naturalness, which have been enormously influential in the field and inspired novel experimental searches to discover them.    

“Chacko’s APS Fellowship highlights his highly original and influential proposals to solve one of the deepest mysteries of particle physics, the Hierarchy Problem,” said Raman Sundrum, Director of the MCFP. “This distinction is richly deserved.”

 

William Douglass Dorland, 1965-2024

Bill Dorland, an esteemed plasma and computational physicist who last week received the American Physical Society’s James Clerk Maxwell Prize, has died at age 58. Since a 2004 diagnosis of chordoma, a rare cancer affecting the spine, he optimistically pursued emerging therapies while advocating for the chordoma community, engaging in continued physics research and serving as a superb mentor and teacher.

After completing his undergraduate studies at the University of Texas (and winning the campus foosball tournament), Dorland earned both a Ph.D. in astrophysical sciences and a Master’s degree in public affairs at Princeton University. He returned to Texas, working at the Institute for Fusion Studies, before joining the University of Maryland in 1998 when his wife, Sarah C. Penniston-Dorland, accepted a fellowship at Johns Hopkins University.

Early in his career, Dorland’s calculations revealed that an international plan to build a gigantic fusion reactor was based on flawed science, thereby saving $10 billion and preventing a probable scientific debacle.

His work modeling plasma turbulence merited the prestigious E. O. Lawrence Medal of the Department of Energy. A Diamondback profile described Dorland’s reluctance to leave his class for a call from “the secretary”, who turned out to be Secretary of Energy Steven Chu relaying news of the award and its $50,000 honorarium.

During his career, Dorland held appointments at the University of Vienna, the University of Oxford and Imperial College, London.  From 2020-23, he served as associate laboratory director for Computational Science at the U.S. Department of Energy's Princeton Plasma Physics Lab, which is managed by Princeton University.

Dorland studied in Japan during high school, and found the experience invaluable and insightful. Arriving at the University of Texas, he was shocked by paucity of such opportunities, and launched a vigorous campaign to direct a fraction of student fees toward international exchanges. The number of students studying abroad from UT grew from eight his freshmen year to more than a thousand four years later. In 2000, he received a special award by the Council on International Education Exchange.

At UMD, he co-developed new curricula, including Physics for Decision Makers: The Global Energy Crisis, a Marquee course to instruct non-science majors in perhaps the world’s most pressing challenge. He was a remarkable mentor; three of Dorland’s undergraduate advisees have received the University Medal.  Twice he officiated the weddings of UMD graduate students.

When his chordoma diagnosis prompted an assessment of his life and priorities, he sought the role of director of the UMD Honors College, recalling his own transformative experience as a UT undergrad. For seven years, he advocated for new programs and encouraged study abroad experiences. In a Maryland Today  article during that time, he described continuing his work through his tortuous medical odyssey with the support of his wife, a professor in the Department of geology, and his daughter Kendall.  The family asks that those interested in commemorating Bill do so with a donation to the Chordoma Foundation.

In 2010, Dorland was named a UMD Distinguished Scholar-Teacher (DST). In a letter supporting the nomination, one student described Dorland as “the sort of genius who, while always impressive, is never intimidating….His cheerful encouragement, quirky sense of humor, and constant support were what kept me going in graduate school, even when finishing the dissertation seemed like an impossible goal.”

In his own DST essay, Dorland wrote that after his diagnosis, “I had occasion to reconsider all the decisions I had made in life, and to adjust my trajectory accordingly for the time remaining. I spent a few weeks thinking hard, and was extraordinarily happy to find that I was already doing exactly that which gives me the most satisfaction.”

He concluded: “I generally work as hard as I can to challenge the best students at the University of Maryland to perform at their very best level. This is my mission. It is nothing more than teaching, research, and love.”


Dorland Selected for APS Maxwell Prize

Professor William Dorland will receive the American Physical Society’s (APS) 2024 James Clerk Maxwell Prize for Plasma Physics for “pioneering work in kinetic plasma turbulence that revolutionizes turbulent transport calculations for magnetic confinement devices and inspires research in astrophysical plasma turbulence". This honor—shared with Greg Hammett, Dorland’s doctoral advisor from Princeton University—will be presented at the 66th Annual Meeting of the APS Division of Plasma Physics in October.

The James Clerk Maxwell Prize annually recognizes outstanding contributions to the field of plasma physics.  The prize is named after a nineteenth century Scottish physicist known for his work with electricity, magnetism and light.Bill Dorland (photo by Mark Sherwood)Bill Dorland (photo by Mark Sherwood)

Dorland graduated with a B.S. in physics (with special and highest honors) from the University of Texas in 1988, and received his Ph.D. in Astrophysical Sciences from Princeton University in 1993. He also earned a Master’s degree in Public Affairs from the Princeton School of Public and International Affairs in 1993, after completing a course of study focused on international science policy.

He then accepted an appointment as a Department of Energy Fusion Postdoctoral Fellow at the Institute for Fusion Studies of the University of Texas and rose to the rank of Associate Research Scientist before joining the University of Maryland in 1998. He holds a joint appointment in Physics and the Institute for Research in Electronics and Applied Physics (IREAP). Dorland has been a Visiting Professor of Theoretical Physics at the University of Oxford since 2010 and held a previous appointment in the Department of Physics of Imperial College, London. From 2020-23, he served as Associate Laboratory Director for Computational Science at the Princeton Plasma Physics Lab.

In 2005, Dorland was elected a Fellow of the APS Division of Plasma Physics. He won the Department of Energy’s 2009 E. O. Lawrence Medal for “his scientific leadership in the development of comprehensive computer simulations of plasma turbulence, and his specific predictions, insights, and improved understanding of turbulent transport in magnetically-confined plasma experiments”.

Dorland is a UMD Distinguished Scholar-Teacher, a recipient of the Richard A. Ferrell Distinguished Faculty Fellowship and a Merrill Presidential Faculty Mentor. He served as Director of the UMD Honors College for seven years, and afterward was cited with an Honors College Outstanding Faculty Award. Three of Dorland’s undergraduate mentees have received the University Medal.  He has been active in professional societies, contributing to APS advocacy for the international freedom of scientists, human rights and national security. He has published more than 150 journal articles.

“With his brilliant insights, Bill Dorland has fundamentally transformed the exploration of turbulence in fusion and astrophysical plasmas, and the Maxwell Prize is an immense and appropriate honor,” said Physics chair Steve Rolston. “In addition, he has been an extraordinary teacher, fantastic colleague and superb mentor. I could not be happier about this recognition.”

The prize carries a $10,000 stipend. UMD physicists who have won the Maxwell Prize include Tom Antonsen,  Phillip A. Sprangle, Roald Sagdeev, James Drake, Hans R. Griem, and Ronald C. Davidson.

Bill Dorland died days after this story was published. Read more about him here: https://umdphysics.umd.edu/about-us/news/department-news/1982-dorland.html