From Unexpected Opportunity to Game-changing Discovery

In the world of startups, opportunity can come knocking in strange ways. Six years ago, Didier Depireux (Ph.D. ’91, physics) was doing research at the University of Maryland when he was approached by Sam Owen, a young scientist who said he’d developed a device to treat motion sickness. Depireux was skeptical but decided to check it out. 

“Since I get very severe motion sickness, I made a deal with him,” Depireux recalled. “I said, ‘I’ll come over with my car and you can drive me around while I use the device. If I haven’t thrown up after 20 minutes while I’m in the back of the car reading, I’ll join the effort.’”

The two made plans to meet in Washington, D.C., on a muggy July afternoon.  Didier DepireuxDidier Depireux

“So, I go to Georgetown. The windows are down, it’s hot, it’s humid and I’m thinking I will not make it past the first turn,” Depireux explained. “Owen is driving and I’m in the back seat using his device and reading my cellphone. And for the first time in my life—and I’m over 50 years old—I was able to read in the back of a car and not get sick. I thought, ‘I need to join this, this is amazing.’”

Thanks to that strange summer ride-along, Depireux joined Owen in launching a startup called Otolith Labs to address inner ear-related conditions and their often debilitating symptoms. Otolith’s noninvasive vestibular system masking technology—designed for acute treatment of vestibular vertigo—received the FDA’s Breakthrough Device designation and clinical trials are ongoing, with support from investors including AOL founder Jack Davies and billionaire entrepreneur Mark Cuban.

All of this sets the stage for a major test that could lead to the startup’s ultimate goal—FDA approval as early as next year.

“In July we told the FDA we want to do a large-scale pivotal trial with hundreds of participants,” Depireux explained. “If all goes well, we’ll have a meeting next summer where the FDA will approve us and then the device will become available.”

For Depireux, it’s the latest step on a bigger mission that has guided his career.

Didier DepireuxDidier Depireux“It’s mostly relevance,” he explained. “I would like my life to make a difference, that’s the one thing that keeps me going.”

From philosophy to physics

Depireux was raised in Belgium. A bright, thoughtful boy, he grew up with a strong interest in science and theory, thanks to his father, a physics professor, and his mother, a chemistry teacher.

“I was always very science-y,” Depireux recalled. “Initially, I wanted to become a philosopher and I read this 800-page book—I think it was Kant—and at the end of it I was like, ‘I still don’t know the answer, and I’m not even sure I understand the question anymore.’ That’s when I thought that’s not a good fit for me.”  

Depireux eventually gravitated toward physics. After receiving his B.S. in physics from the University of Liège in Belgium in 1986, he began his graduate work in physics at the University of Maryland, where he focused on string theory and met Distinguished University Professor of Physics Sylvester James Gates Jr., who quickly became a mentor and friend.

“Jim had a huge impact on me. He was a fantastic person to work with and he had so much positive energy,” Depireux said. “I still remember late one night I was working on something, and I was stuck and I wrote to him, and he said, ‘I’ll come over, let’s work this out.’ So we had office hours at 10:30 p.m. just because I couldn’t solve a problem.”

Depireux earned his Ph.D. in 1991 and went on to do postdoctoral work in Quebec, Canada, before returning to College Park in 1994. Inspired by his wife Pamela, who was getting her Ph.D. in neuropharmacology, Depireux took on the challenge of modeling the brain and studying how it processes sound. By 2001, he was also teaching a gross anatomy class at the University of Maryland School of Medicine.

“I think, to this day, I am the only string theorist who has taught gross anatomy,” he reflected.

From his research on the brain and hearing, Depireux shifted his focus to tinnitus—disruptive ringing in the ears. He explored possible treatments and eventually teamed up with former UMD Bioengineering Professor Benjamin Shapiro who was already working on the drug delivery challenges Depireux was trying to solve.

“I wanted to get drug delivery to the ear but I didn’t know how to do it,” Depireux said. “He had this method with nanoparticles to deliver drugs and I had the target so we started working together.”

In 2013, the two launched Otomagnetics, a startup that has made major strides in developing noninvasive methods to treat inner ear diseases and more.

“We’ve gotten very nice results as far as drug delivery goes and Otomagnetics is still an ongoing concern,” Depireux explained, “But raising money for drug delivery is the real challenge, because to get drug delivery to the ear is going to take hundreds of millions of dollars, and that hasn’t happened yet.”

Going all-in on Otolith

Depireux balanced his time between Otomagnetics, his UMD research and teaching at the School of Medicine until 2016, when he experienced Owen’s experimental motion sickness device for the first time. Depireux saw so much potential with the device that he went all-in on Otolith. 

“You have to have pretty strong resilience to join a startup—I went for a year and a half without a salary or anything,” Depireux explained. “It’s not like we didn’t have money, we just needed all of the money to develop the device, get the patents in, all of the things we had to do.”

Though Otolith started with a motion sickness device, its co-founders hoped to make an even bigger impact by developing a device for vertigo, debilitating dizziness often caused by problems in the inner ear.

And they had a plan.

“For tinnitus or ringing in the ears, some patients get relief from a noise masker—they can still perceive their tinnitus, but the noise masker allows them to ignore the tinnitus,” Depireux explained. “So Sam, my cofounder said, ‘Why don’t we come up with a noise masker for the vestibular system?’”

That’s exactly what they did. Their novel device, worn like a headband, treats vertigo by applying localized mechanical stimulation to the vestibular system through calibrated vibrations. 

Depireux says he never would have made it this far without physics.

“My physics training really helped me,” he explained. “In physics, you have this huge problem and you have to break it down. If it’s intractable, you make it tractable, break it into small, simple things we can understand and then we can solve it.”

Promising results and personal stories

Clinical trials of Otolith’s investigational headband have yielded promising results. In the first of a series of ongoing clinical studies, 87.5% of the 40 participants reported a reduction in their vertigo within five minutes of turning on the device. But for Depireux, it’s the personal stories that are most rewarding.

“Somehow my phone number was listed as an emergency contact on clinicaltrials.gov, which I thought would be for emergencies only,” he said. “I’d have patients calling me in tears, telling me, ‘When my grandkids visit, I can finally bend down and pick them up, and it used to be that just bending down would send me into such vertigo that I would have to go to bed for days.’ Or ‘For the first time in years, I’ve been able to walk around the block.’ That’s what really motivates me.”

It's been Depireux’s goal all along—doing relevant research that changes people’s lives.

“We cannot help 100% of vertigo patients, no device does that,” he reflected. “But if we can help even half of those patients, that’s really my hope.”

Looking back on a career path that’s been anything but predictable, Depireux appreciates every challenge and setback that got him to where he is today.

“Something can feel like a failure when things go wrong, but then later you realize you really learned something from it,” he reflected. “I’m so grateful I was given the opportunity to come to the U.S. and study physics and do research in College Park, do this random walk in my career and finally end up doing something that I feel has given me great meaning in my life.”

Written by Leslie Miller

Diving into UMD’s Quantum Community

In 2021, when Jade LeSchack was a high school senior imagining herself at potential colleges, she was already entranced by physics—quantum physics in particular. After taking high school physics classes and an online course on quantum computing, she wanted to explore the world of physics more fully. 

“I loved that in class we talked about a lot of different topics that were not just mechanics related,” LeSchack said. “We were talking about waves, quantum mechanics a little bit here and there, about sound and things like that. That's where I really found a love for physics. And then taking the Qubit by Qubit online Introduction to Quantum Computing course, that solidified it for me, because I realized you need physics for quantum computing. And I really wanted to dive deeper into physics.”Jade LeSchack and Sondos Quqandi, the UQA Vice President and a UMD physics major, at an informational table for the quantum track of Bitcamp 2021. Image credit: Dhruv SrinivasanJade LeSchack and Sondos Quqandi, the UQA Vice President and a UMD physics major, at an informational table for the quantum track of Bitcamp 2021. Image credit: Dhruv Srinivasan

That desire attracted her to the University of Maryland’s flourishing and top-rated physics program, where an ambitious student can engage in basic research and learn how quantum physics is being harnessed in cutting-edge quantum technologies. UMD encompasses eight centers and institutes dedicated to quantum research, is part of the Mid-Atlantic Quantum Alliance, and is home to the Quantum Startup Foundry. Last year, as a freshman physics major at UMD, LeSchack wasted no time before connecting with faculty, embracing the resources offered by the university and even creating new opportunities for herself and her fellow undergrads in the form of a quantum club.

While LeSchack was still investigating prospective colleges, she noticed Nicole Yunger Halpern, a quantum theorist who is now an adjunct assistant professor of physics at UMD, on the QuICS website. Yunger Halpern was moving to UMD and a position at NIST in the fall of 2021, the same time LeSchack would be starting if she decided to become a UMD student. 

“I wanted to reach out to her to see what her experience has been like,” LeSchack said. “And what has her path been? I wanted to connect with another woman in STEM. And it was great to just talk with her. I had looked at all of her research pages and some of the titles of the papers she published, and I was like, wow, I don't understand any of that. And she said, ‘But you will; you will soon.’ That was nice to hear.”

Yunger Halpern invited LeSchack to sit in on a group meeting to see what her research group was like, which developed into an ongoing arrangement throughout the year. Yunger Halpern provided additional mentorship as the year went on, like walking LeSchack through how she approaches reading an academic paper. 

Jade LeSchack Jade LeSchack "I can best illustrate how self-driven Jade is by sharing that, before she even enrolled at UMD, she decided that she was going to specialize in quantum computing and I was going to be her advisor,” Yunger Halpern said. “One can scarcely stand in the way of such determination! Her passion for physics and leadership have been a delight to engage with throughout the past year."

Once LeSchack decided that UMD was where she wanted to go and before her first semester had even started, she was looking for a way to contribute to the community. As a high school student, she had learned about undergraduate quantum clubs at universities like Stanford and MIT through hackathons—events where people gather to develop computer coding skills through workshops and challenges.

“I enjoy starting things, and then also using those things to teach people about the things that I'm interested in,” LeSchack said. “Since there were models that existed before, I wanted to take up the mantle of starting something at UMD because I thought a quantum club belongs here for the students and that there might be interest.”

She reached out to various people at UMD about her idea for an undergraduate quantum club. She eventually connected with Donna Hammer, the director of Student and Education Services in the Department of Physics, who suggested LeSchack present her vision for a club at the meeting for all the department’s students that happened on the first Wednesday of the semester.

“She said we need to start recruiting people, we need to see the interest and we should get started right away,” LeSchack said. “Donna has been really instrumental in helping sponsor the club and helping me get it off the ground.”

The result was the formation of the Undergraduate Quantum Association (UQA), which helps students learn about and engage with quantum science and technology by hosting events—including quantum hackathons, speaker events and lab tours. LeSchack’s goal is for the club to aid students from a variety of majors.

“I think that what's cool about what UQA can do is that it can pull people from all majors—not just physics—because quantum computing is an intersection between physics and computer science as well as math, and it has applications to even more than that, like bioengineering, chemistry and finance,” LeSchack said. “So those places where the applications are, are where UQA wants to help bring students that are not just physics majors in and say this new field is going to have applications to what you are already interested in, how can you incorporate quantum into what you're doing?”Anthony Munson, Nicole Yunger Halpern and Jade LeSchackAnthony Munson, Nicole Yunger Halpern and Jade LeSchack

In UQA’s first year, one of its main events was giving its members a firsthand look at quantum industry by touring IonQ. IonQ is the first publicly traded quantum computing company, and it grew out of UMD research projects and is based in the UMD Discovery District. The members of UQA got to see the company’s labs and quantum computer and meet with some of the staff.

UQA also participated in organizing the quantum track of the 36-hour Bitcamp hackathon put on by the university. The quantum track covered a broad range of quantum topics, including introducing qubits, the most fundamental pieces of quantum computers; using Qiskit, an open-source software development kit for working with quantum computers; and solving a programming challenge by using simulations to determine the ground state bond length of hydrogen molecules. 

While getting UQA started, LeSchack also made time to get firsthand experience working in a lab. During the annual department research fair in October 2021, LeSchack met Patrick Banner, a UMD physics graduate student. Over the winter break she reached out to him about getting hands-on lab experience. She wanted to try lab work early so she could figure out what type of research she enjoyed and to ensure that she really understood what academic research is in practice. 

She asked Banner about opportunities to contribute to research, and he helped arrange for her to work in the lab run by UMD Physics Adjunct Professor Trey Porto and UMD Physics Professor Steve Rolston, who is also chair of the Department of Physics. Under the guidance of Banner and Deniz Kurdak, another UMD physics graduate student, she worked on an electronics project. Besides developing practical skills working in the lab, she got to see how Porto’s experimental group had a different dynamic from Yunger Halpern’s theoretical group.

After a year of classes, research and lab work, LeSchack is still eager to learn more about physics and quantum computing. She said that UQA plans to arrange more events in the upcoming semesters and do additional lab tours, including possibly returning to IonQ. She also hopes the group will be able to collaborate with the Quantum Coalition—an intercollegiate group of undergraduate quantum computing clubs from several universities.

“I want to make UQA something that lasts longer than just the four years that I'm here,” LeSchack said. “So that starts with engaging all the incoming classes and building a structure that will last a long time.”

Students interested in learning more about UQA may reach out to LeSchack via her email This email address is being protected from spambots. You need JavaScript enabled to view it..

 

Story by Bailey Bedford 

Faculty, Staff, Student and Alumni Awards & Notes

We proudly recognize members of our community who recently garnered major honors, began new positions and more.

Faculty and Staff 
 Students
 Alumni
  • John "Yiannis" Antoniades (Ph.D., '83) was named Executive Vice President of Meta Materials.
  • Laird Egan (Ph.D., '21) described hasty preparations for COVID-mandated remote control of an experiment in a JQI podcast.
  • Joe Grochowski (M.S., '10) teaches physics at West Shore Community College in Scottville, Michigan.
  • Alan Henry (B.S., '02) wrote a book, Seen, Heard & Paid.  Henry will give the CMNS Diversity Lecture on Thurs., Nov. 10 at 4 p.m. in 0202 E. St. John Bldg.
  • Scott Kordella (B.S., '81) is the Director of Space Systems at The MITRE Corporation.
  • V. Bram Lillard (M.S., '01, Ph.D., '04) was named director of the Operational Evaluation Division of the Institute for Defense Analyses.
  • Scott Moroch (B.S., '21) received a $250k Hertz Fellowship.
  • Guido Pagano, a former UMD/JQI postdoc, has received a DOE Early Career Award. 
  • Julia Ruth (B.S., '14) was featured in Symmetry magazine.
  • Sylvie Ryckebusch (B.S., '87) was named Chief Business Officer of BioInvent.
  • Pablo Solano ( Ph.D., '17) was named a CIFAR Azrieli Global Scholar.
Department News
  • The National Science Foundation has awarded an S-STEM grant for Chesapeake Scholars in the Physical Sciences, with Eun-Suk Seo as PI and Carter Hall, Chandra Turpen, Donna Hammer and Jason D. Kahn (chemistry) as co-PIs.
  • IonQ was named one of Time's Most Influential Companies. 
In Memoriam

Alfred George Lieberman (M.S., '72), who spent much of his career at NIST/Gaithersburg, died on June 25.

 

Recent Physics Grad Sees Many Roads Ahead

As Jeffrey Wack (B.S. ’22, physics; B.S. ’22, mathematics) walked across the graduation stage in May 2022, he carried with him a lot of uncertainty about where to go next. His trepidation came from his voracious curiosity for a broad range of things, primarily within physics and math—the subjects of his two degrees—but also from his interests in teaching, outreach and music. The prospect of having to pick just one path forward felt confining to Wack. But that same curiosity served him extremely well during his time at the University of Maryland, and it left him with many opportunities for next steps.Jeffrey Wack (courtesy of same)Jeffrey Wack (courtesy of same)

Wack collected an impressive resume at UMD. He taught an introductory course on nuclear physics and reactor operations, studied physics in Florence, participated in an optomechanics research project that resulted in a publication, made significant contributions to experimental research with coplanar waveguides, and co-taught a self-designed course on music theory and math. Since graduating, he began working as a fellow at the Museum of Math in New York City, sampling the working world while contemplating graduate school.

“The four years I spent at UMD were the best four years of my life this far,” Wack says. “I’m already having a blast living in New York, but I’m going to miss all the great people I met in College Park.”

Born and raised in Carroll County, Maryland, Wack attributes his broad scientific curiosity to his upbringing and the influence of his father.

“My dad is a pediatrician, but he's very interested in all sorts of science,” Wack says. “I have memories of playing the ‘why’ game with him and just asking him why. You know, you ask why, and then no matter what the answer is, you can always ask why again, and you sort of end up down this rabbit hole.”

Although the younger Wack asked questions about everything, from why fruit grows to what an immune system is, his earliest fascination orbited around astronomy. Then, during high school, his curiosity shifted gears, landing on the curiously strong connection between physics and mathematics.

“There was something about physics and calculus in particular that I really enjoyed,” says Wack. “Those relationships between position and velocity and acceleration, there's something about them that really caught me. Like ‘that's awesome!’”

Following in his older sister’s footsteps, Wack chose to attend UMD, drawn in by the opportunities for learning all things physics and math at a large university. In the fall of 2019, Wack studied abroad in the Maryland-in-Florence program, specifically designed for physics students to continue taking required courses while exposing themselves to a foreign culture and language. He was particularly inspired by the instruction of Luis Orozco, now professor emeritus at UMD and a Fellow at the Joint Quantum Institute (JQI). After the semester abroad ended, Wack reached out to Orozco to see if he could work with him on a research project. Orozco agreed, and during the summer of 2020 invited him to join a nanofiber project. 

Orozco’s research interests include optomechanics, the study of interactions between mechanical systems and electromagnetic waves. The project Wack joined was a multi-national collaboration, with an experimental group at Shanxi University in China and a collaborator at the University of Conception in Chile. The goal was to use light to cool an optical fiber as it travels through it.

Optical fibers are used to confine and direct light, whether it’s for carrying internet signals to homes or aiding in research. The fibers Orozco’s team used are stretched incredibly thin, about a hundred times thinner than human hair. These nano-fibers guide light, but they hardly confine it—some of the light actually travels outside the fiber. This is particularly useful for studying the interaction of light with atoms and ions, which can be brought close to (but remain outside of) the fiber. The downside is that the fiber is quite fragile and prone to tiny vibrations that shake and twist it, disturbing the light as it travels.

To minimize these tiny twists, the team sent in a laser beam of a particular intensity. The interaction of the beam with the material inside the fiber counteracted the fiber’s twisting, minimizing that particular vibration and thus cooling down the fiber overall. To detect this cooling, the team sent a second, probing laser beam and observed how much the fiber’s twists and turns perturbed that beam.

Wack’s role was to analyze the raw photodetector data from the probing laser and use it to extract information about the fiber twists. He analyzed the data and concluded that the method was successful, as detailed in a recent paper published in Photonics Research. But Wack wasn’t satisfied with simply analyzing data. He played the ‘why’ game, trying to understand the deeper physics of what was going on. He made his own, simplified model of the cooling mechanism—not to put in the paper, but enough to model the system to his own satisfaction. “I did that just to entertain myself,” Wack explains.

"Jeffrey contributed crucially in understanding the cooling process, thanks to his analysis of the distribution of the temperature fluctuations,” Orozco says. “The plots he produced made it into figure two of the publication."

By the summer of 2021, COVID-19 restrictions were easing up, and Wack was itching to try hands-on lab work. He joined the group of one of UMD’s most mathematically minded experimentalists, Chesapeake Assistant Professor of Physics and JQI Fellow Alicia Kollár. Kollár’s research concerns coplanar waveguides—little paths printed on a circuit board that microwaves can travel through—to create never before seen geometries and interaction patterns between bits of quantum information known as qubits.

Kollár’s creation of novel geometries relies on a peculiar theoretical property of coplanar waveguides: that stretching or scrunching them up does not change the frequency of microwaves they carry. Wack’s role was to make careful measurements to test how well this property holds in practice.

To investigate this, Wack had to get his hands dirty with several different lab skills. He had to learn to solder and assemble electronics, work with graduate students to create coplanar waveguides of different lengths, analyze data, and model the system using purpose-built software.

“Jeff did really phenomenal work,” Kollár says. “He was really just sort of diving into research, almost like a senior graduate student.”

Wack automated some simulation steps that had previously been done manually and used the new process to quantify a confounding effect—that the frequency change depended on the number of times that the waveguide was bent. If this pattern is confirmed experimentally, Kollár says, it will be used in many future experiments and theoretical studies alike.

On top of his studies and research, Wack also found ways to participate in outreach and teaching throughout his time at UMD. He volunteered to film a slinky demonstration of wave propagation. He taught an introductory course on nuclear physics and reactor theory to undergraduates for the Maryland Undergraduate Training Reactor (MUTR) program, where undergrads can become certified reactor operators. He also has an interest in music, having sung and performed in musicals in high school and having picked up electric bass during his college years. “And also, because I'm such a geek for computers, I do some digital synthesis,” Wack says. He found a way to weave this in with his math interest by creating a co-teaching a course on the math of music for the Student Initiated Courses (STIC) program.

Upon graduating last spring, Wack decided to take a gap year. This summer, he started a fellowship at the Museum of Math, combining his passion for mathematics and outreach. As a docent there, he talks to visitors about the exhibits and thinks a lot about math. As part of the fellowship, he’s also pursuing a personal project: planning a live performance that combines music, physics demos and lectures on math and music theory.

“So many of the paths forward seem appealing to me,” Wack says. “I'm going to go to grad school at some point, but this is part of why I wanted to do a gap year. I'm hoping that over the next two years, it'll come to me like ‘Aha! This is exactly what I want to do.’”

 

Written by Dina Genkina

Women in Physics Group Changes its Name to Physicists of Underrepresented Genders

Women in Physics (WiP) has officially been renamed Physicists of Underrepresented Genders (PUGs) at the University of Maryland.

According to UMD physics graduate student Ina Flood, the group’s new president, the change reflects the organization’s ongoing commitment to fostering a supportive and encouraging community for all.

“Changing our name was a group decision initiated under Mika Chmielewski, our previous president,” Flood said. “The rationale behind this decision was to make it obvious that we’re committed to supporting people who might feel like they are underrepresented in the physics community. The name change is to help people feel that they’re included and welcome from the get-go.”

For more than a decade, WiP has provided physics undergraduate and graduate students with resources such as a mentoring program and networking opportunities. In addition to professional development events led by physics faculty members and professionals, the club also offered social programming like group study sessions, where members mingled and made new friends.PUGs (Physicists of Underrepresented Genders)PUGs (Physicists of Underrepresented Genders)

PUGs plans to continue the group’s ongoing programs and opportunities while taking a more proactive approach to supporting all members of the physics community. 

“As a university club, we’re already open to all people and sincerely welcome anyone who is interested in physics,” said incoming physics graduate student Kate Sturge (B.S. ’22, physics; B.S. ’22, astronomy), who was an active undergraduate member of WiP and is currently the PUGs webmaster and social media manager. “But this name change is our way of making ourselves more deliberate and explicit in supporting everyone in physics.”

Physics Chair Steve Rolston echoes the sentiment: "We value the contributions of everyone who shares our love of physics. We appreciate PUGs’ efforts to make that crystal clear."

Flood, Sturge and other PUGs members plan to do more to coordinate with other LGBTQ+ student organizations on campus. Flood said she hopes increased communication and collaboration will also help PUGs connect mentors with mentees and share more institutional knowledge about STEM and physics. The group also plans to develop more opportunities for safe in-person gatherings, including “study hours,” during which physics students gather to discuss and do homework together.

“Our biggest goal after our name change is to expand our accessibility and availability to members who may need guidance or community support during the school year,” Flood said. “It’s really important to our organization that we get people together, facilitate meaningful conversations and celebrate our shared identity as physicists.”