UMD Physics Alumnus Pablo Solano Awarded Dissertation Prize

Pablo Solano, a recent graduate student with JQI Fellow and UMD physics professor Luis Orozco, has been awarded the Charles A. Caramello Distinguished Dissertation Prize. According to the official award description, the prize recognizes “original work that makes an unusually significant contribution to its discipline.” The prize is given in four broad disciplinary areas and comes with an honorarium.

Solano received the prize in the area of Mathematics, Physical Sciences, and Engineering for his dissertation titled “Quantum Optics in Optical Nanofibers”. His research focused on studying the properties of light as it propagates through optical nanofibers, and how such a system enables special atom-light interactions. His thesis work was nominated by the College of Computer, Mathematical and Natural Sciences and selected by a multi-disciplinary campus committee. Solano will be honored at the UMD Graduate School’s Ninth Annual Fellowship and Award Celebration.

Solano is currently a postdoctoral associate at the Research Laboratory for Electronics and the Physics department at MIT. He is currently working on cavity-QED experiments in the strong coupling regime using laser cooled cesium atoms trapped at the center of a high-finesse Fabry-Perot cavity.

Atoms May Hum a Tune from Grand Cosmic Symphony

Researchers playing with a cloud of ultracold atoms uncovered behavior that bears a striking resemblance to the universe in microcosm. Their work, which forges new connections between atomic physics and the sudden expansion of the early universe, will be published in Physical Review X and highlighted by Physics.

"From the atomic physics perspective, the experiment is beautifully described by existing theory," says Stephen Eckel, an atomic physicist at the National Institute of Standards and Technology (NIST) and the lead author of the new paper. "But even more striking is how that theory connects with cosmology."

In several sets of experiments, Eckel and his colleagues rapidly expanded the size of a doughnut-shaped cloud of atoms, taking snapshots during the process. The growth happens so fast that the cloud is left humming, and a related hum may have appeared on cosmic scales during the rapid expansion of the early universe—an epoch that cosmologists refer to as the period of inflation.

The work brought together experts in atomic physics and gravity, and the authors say it is a testament to the versatility of the Bose-Einstein condensate (BEC)—an ultracold cloud of atoms that can be described as a single quantum object—as a platform for testing ideas from other areas of physics.

"Maybe this will one day inform future models of cosmology," Eckel says. "Or vice versa. Maybe there will be a model of cosmology that’s difficult to solve but that you could simulate using a cold atomic gas."

It’s not the first time that researchers have connected BECs and cosmology. Prior studies mimicked black holes and searched for analogs of the radiation predicted to pour forth from their shadowy boundaries. The new experiments focus instead on the BEC’s response to a rapid expansion, a process that suggests several analogies to what may have happened during the period of inflation.

The first and most direct analogy involves the way that waves travel through an expanding medium. Such a situation doesn’t arise often in physics, but it happened during inflation on a grand scale. During that expansion, space itself stretched any waves to much larger sizes and stole energy from them through a process known as Hubble friction.

In one set of experiments, researchers spotted analogous features in their cloud of atoms. They imprinted a sound wave onto their cloud—alternating regions of more atoms and fewer atoms around the ring, like a wave in the early universe—and watched it disperse during expansion. Unsurprisingly, the sound wave stretched out, but its amplitude also decreased. The math revealed that this damping looked just like Hubble friction, and the behavior was captured well by calculations and numerical simulations.

"It's like we're hitting the BEC with a hammer," says Gretchen Campbell, the NIST co-director of the Joint Quantum Institute (JQI) and a coauthor of the paper, "and it’s sort of shocking to me that these simulations so nicely replicate what's going on."

In a second set of experiments, the team uncovered another, more speculative analogy. For these tests they left the BEC free of any sound waves but provoked the same expansion, watching the BEC slosh back and forth until it relaxed.

In a way, that relaxation also resembled inflation. Some of the energy that drove the expansion of the universe ultimately ended up creating all of the matter and light around us. And although there are many theories for how this happened, cosmologists aren’t exactly sure how that leftover energy got converted into all the stuff we see today.

In the BEC, the energy of the expansion was quickly transferred to things like sound waves traveling around the ring. Some early guesses for why this was happening looked promising, but they fell short of predicting the energy transfer accurately. So the team turned to numerical simulations that could capture a more complete picture of the physics.

What emerged was a complicated account of the energy conversion: After the expansion stopped, atoms at the outer edge of the ring hit their new, expanded boundary and got reflected back toward the center of the cloud. There, they interfered with atoms still traveling outward, creating a zone in the middle where almost no atoms could live. Atoms on either side of this inhospitable area had mismatched quantum properties, like two neighboring clocks that are out of sync.

The situation was highly unstable and eventually collapsed, leading to the creation of vortices throughout the cloud. These vortices, or little quantum whirlpools, would break apart and generate sound waves that ran around the ring, like the particles and radiation left over after inflation. Some vortices even escaped from the edge of the BEC, creating an imbalance that left the cloud rotating.

Unlike the analogy to Hubble friction, the complicated story of how sloshing atoms can create dozens of quantum whirlpools may bear no resemblance to what goes on during and after inflation. But Ted Jacobson, a coauthor of the new paper and a physics professor at the University of Maryland specializing in black holes, says that his interaction with atomic physicists yielded benefits outside these technical results.

"What I learned from them, and from thinking so much about an experiment like that, are new ways to think about the cosmology problem," Jacobson says. "And they learned to think about aspects of the BEC that they would never have thought about before. Whether those are useful or important remains to be seen, but it was certainly stimulating."

Eckel echoes the same thought. "Ted got me to think about the processes in BECs differently," he says, "and any time you approach a problem and you can see it from a different perspective, it gives you a better chance of actually solving that problem."

Future experiments may study the complicated transfer of energy during expansion more closely, or even search for further cosmological analogies. "The nice thing is that from these results, we now know how to design experiments in the future to target the different effects that we hope to see," Campbell says. "And as theorists come up with models, it does give us a testbed where we could actually study those models and see what happens."

The new paper included contributions from two coauthors not mentioned in the text: Avinash Kumar, a graduate student at JQI; and Ian Spielman, a JQI Fellow and NIST physicist.

Story by Chris Cesare

RESEARCH CONTACT
Stephen Eckel I This email address is being protected from spambots. You need JavaScript enabled to view it.                           

Gretchen Campbell | This email address is being protected from spambots. You need JavaScript enabled to view it.                           

Ted Jacobson| This email address is being protected from spambots. You need JavaScript enabled to view it.

MEDIA CONTACT
Chris Cesare | This email address is being protected from spambots. You need JavaScript enabled to view it.

RELATED JQI ARTICLES
Novel Phases for Bose Gases
Stirring-up atomtronics in a quantum circuit
An ultracold landscape for atomtronics
Stirring Up New Physics in Toroidal BECs

Machine Learning’s ‘Amazing’ Ability to Predict Chaos

The findings come from Professors Michelle Girvan and Edward Ott along with two other UMD collaborators. "They employed a machine-learning algorithm called reservoir computing to “learn” the dynamics of an archetypal chaotic system called the Kuramoto-Sivashinsky equation. The evolving solution to this equation behaves like a flame front, flickering as it advances through a combustible medium."

Read More

A Different Spin on Superconductivity: Unusual Particle Interactions Open up new Possibilities in Exotic Materials

When you plug in an appliance or flip on a light switch, electricity seems to flow instantly through wires in the wall. But in fact, the electricity is carried by tiny particles called electrons that slowly drift through the wires. On their journey, electrons occasionally bump into the material’s atoms, giving up some energy with every collision.

The degree to which electrons travel unhindered determines how well a material can conduct electricity. Environmental changes can enhance conductivity, in some cases drastically. For example, when certain materials are cooled to frigid temperatures, electrons team up so they can flow uninhibited, without losing any energy at all—a phenomenon called superconductivity.

Now a team* of researchers from the University of Maryland (UMD) Department of Physics together with collaborators has seen exotic superconductivity that relies on highly unusual electron interactions. While predicted to occur in other non-material systems, this type of behavior has remained elusive. The team’s research, published in the April 6 issue of Science Advances, reveals effects that are profoundly different from anything that has been seen before with superconductivity.

Electron interactions in superconductors are dictated by a quantum property called spin. In an ordinary superconductor, electrons, which carry a spin of ½, pair up and flow uninhibited with the help of vibrations in the atomic structure. This theory is well-tested and can describe the behavior of most superconductors. In this new research, the team uncovers evidence for a new type of superconductivity in the material YPtBi, one that seems to arise from spin-3/2 particles.

“No one had really thought that this was possible in solid materials,” explains Johnpierre Paglione, a UMD physics professor and senior author on the study. “High-spin states in individual atoms are possible but once you put the atoms together in a solid, these states usually break apart and you end up with spin one-half. “

Finding that YPtBi was a superconductor surprised the researchers in the first place. Most superconductors start out as reasonably good conductors, with a lot of mobile electrons—an ingredient that YPtBi is lacking. According to the conventional theory, YPtBi would need about a thousand times more mobile electrons in order to become superconducting at temperatures below 0.8 Kelvin. And yet, upon cooling the material to this temperature, the team saw superconductivity happen anyway. This was a first sign that something exotic was going on inside this material.

After discovering the anomalous superconducting transition, researchers made measurements that gave them insight into the underlying electron pairing.  They studied a telling feature of superconductors—their interaction with magnetic fields. As the material undergoes the transition to a superconductor, it will try to expel any added magnetic field from its interior. But the expulsion is not completely perfect. Near the surface, the magnetic field can still enter the material but then quickly decays away. How far it goes in depends on the nature of the electron pairing, and changes as the material is cooled down further and further.

To probe this effect, the researchers varied the temperature in a small sample of the material while exposing it to a magnetic field more than ten times weaker than the Earth’s. A copper coil surrounding the sample detected changes to the superconductor’s magnetic properties and allowed the team to sensitively measure tiny variations in how deep the magnetic field reached inside the superconductor.

The measurement revealed an unusual magnetic intrusion. As the material warmed from absolute zero, the field penetration depth for YPtBi increased linearly instead of exponentially as it would for a conventional superconductor. This effect, combined with other measurements and theory calculations, constrained the possible ways that electrons could pair up. The researchers concluded that the best explanation for the superconductivity was electrons disguised as particles with a higher spin—a possibility that hadn’t even been considered before in the framework of conventional superconductivity.

The discovery of this high-spin superconductor has given a new direction for this research field. “We used to be confined to pairing with spin one-half particles,” says Hyunsoo Kim, lead author and a UMD assistant research scientist. “But if we start considering higher spin, then the landscape of this superconducting research expands and just gets more interesting.”

For now, many open questions remain, including how such pairing could occur in the first place. “When you have this high-spin pairing, what’s the glue that holds these pairs together?” says Paglione. “There are some ideas of what might be happening, but fundamental questions remain–which makes it even more fascinating.”

* The research was done at UMD’s Center for Nanophysics and Advanced Materials, Condensed Matter Theory Center and the Joint Quantum Institute, in collaboration with Ames Laboratory at Iowa State University, the Lawrence Berkley National Laboratory, the University of Otago and the University of Wisconsin.

Publication in Science Magazine

Written by: Nina Beier