Davoudi Receives Ken Wilson Award

Assistant Professor Zohreh Davoudi has been honored with the 2018 Kenneth G. Wilson Award for Excellence in Lattice Field Theory during the 36th Annual International Symposium on Lattice Field Theory held July 22–28 at Michigan State University. Davoudi was cited for her fundamental contributions to lattice field theory in a finite volume that are essential for performing lattice simulations of complex systems.

The annual award is named after Nobel Laureate Ken Wilson (1936-2013), who founded lattice gauge theory in 1974, permitting such theories to be studied numerically using powerful computers. Established in 2011, the award recognizes outstanding lattice field theorists who are within seven years of completing the Ph.D., and consists of a modest monetary prize and an invitation to give a plenary talk at the next symposium on lattice field theory.

Davoudi’s significant contributions to formulating the path between quantities obtained in numerical simulations of lattice field theory in a finite spacetime and the physical observables have advanced the few-body frontier in lattice field theory. The cited work paved the road towards obtaining important quantities in particle and nuclear physics, such as two and three-body scattering amplitudes, bound-state properties, electromagnetic structure of hadrons and nuclei, coupled-channel scattering and reaction rates.

Davoudi received her Ph.D. in theoretical nuclear physics at the University of Washington, and held a postdoctoral position at the Center for Theoretical Physics at the Massachusetts Institute of Technology before joining UMD in 2017. She studies how complex systems of hadrons and nuclei emerge from fundamental interactions of nature using a combination of analytical and computational methods.

zohreh receiving Ken Wilson Lattice AwardPhoto courtesy of Lattice 2018. Christine Davies, University of Glasgow (left) Zohreh Davoudi, University of Maryland (right).

Complexity Test Offers New Perspective on Small Quantum Computers

State-of-the-art quantum devices are not yet large enough to be called full-scale computers. The biggest comprise just a few dozen qubits—a meager count compared to the billions of bits in an ordinary computer’s memory. But steady progress means that these machines now routinely string together 10 or 20 qubits and may soon hold sway over 100 or more.

Read More

Chris Monroe Co-authors Piece on National Quantum Initiative - The Washington Times

Quantum technology harnesses the radical power of quantum systems — such as isolated atoms, photons and electrons — to transform how we process and communicate information. But that potential can be realized only if our nation’s resources are focused in a way that helps bring quantum research from the laboratory to the marketplace.

Read More

IceCube Neutrinos Point to Long-Sought Cosmic Ray Accelerator

An international team of scientists, with key contributions from researchers at the University of Maryland, has found the first evidence of a source of high-energy cosmic neutrinos—ghostly subatomic particles that travel to Earth unhindered for billions of light years from the most extreme environments in the universe.

Read More