UMD Celebrates Grand Opening of World-Class Research and Education Facility  

Click image for information.

The University of Maryland’s new Physical Sciences Complex is an instant architectural landmark with its shimmering elliptical atrium, and with its official opening on April 23, 2014, the state-of-the-art research building is poised to become a landmark of scientific achievement. 

Designed to create ideal conditions for scientific innovation—precision in the laboratory and freewheeling conversation in the corridors—the Physical Sciences Complex is one of the largest building projects in the university’s history. Constructed with a $115.7 million contribution from the state of Maryland and $10.3 million from the federal government’s National Institute of Standards and Technology (NIST), the 160,000-square-foot building houses nearly 50 laboratories, more than half of which were constructed to the most stringent technical standards.

This gives the university one of the nation’s largest expanses of top-quality research space, which already is attracting top scientists who will collaborate on groundbreaking discoveries about the universe, quantum science and the battle against disease. Occupying the new space are the university’s physics and astronomy departments; the interdisciplinary Institute for Physical Science and Technology; and the Joint Quantum Institute, a partnership between NIST and UMD.

“The partnership between NIST and the University of Maryland, going back some 40 years now, is one of our oldest, longest running, and most productive collaborations, but the new Physical Sciences Complex is a new high. We’re very pleased to have played in part in the creation of this outstanding research facility,” said Patrick Gallagher, director of NIST and undersecretary of commerce for standards and technology.

The capabilities of the Physical Sciences Complex will enhance UMD’s leadership in theoretical, experimental and applied quantum science research, placing the university firmly at the leading edge of what is likely to be the next great scientific revolution.

“The yellow brick road in cutting-edge fields like quantum science now leads to College Park,” says UMD President Wallace Loh. “Our faculty are now demonstrating the feasibility of quantum computing, and with these advanced facilities, they will have the tools and new partnerships to develop the concept.”

Fifteen years in the planning, and designed with extensive input from faculty members in the College of Computer, Mathematical, and Natural Sciences, the facility reflects the university’s commitment to collaborative research of the highest technical standards. Construction began in 2010.

“The new Physical Sciences Complex is a key component of our university's strategy to work across disciplines and with federal and state partners to create the innovations of tomorrow and educate the next generation of science and technology leaders,” says Jayanth Banavar, dean of the College of Computer, Mathematical, and Natural Sciences. 

Today’s experiments in quantum science and other technically demanding fields require precise control over conditions such as temperature, humidity and vibration. To accomplish this, the Physical Sciences Complex is built of reinforced concrete, which is stronger than steel. Laboratories’ temperatures are controlled to within .5 degree Celsius (.9 degree Fahrenheit); humidity is controlled to within 1 percent; and laboratory walls are isolated to minimize vibrations.

Two levels of underground laboratories, as much as 55 feet below the building’s plaza, were designed for researchers working with atoms and lasers and were built to the exacting standards of NIST’s Advanced Measurement Laboratory, one of the most sophisticated labs in the world for quantum physics research. The underground setting minimizes vibrations, electromagnetic variations and radiofrequency interference. To further reduce the chance of interference with delicate instruments, telephone connections are fiber optic and electrical wiring is carried through special insulated conduits. Anti-static flooring helps control static electricity.

The Physical Sciences Complex’s most striking architectural feature is a wide elliptical atrium. Shaped to reflect the orbits of planets and stars, the atrium soars through all four above-ground levels. The ellipse is lined with 953 panes of clear and red glass in a checkerboard pattern and opens the building up to the sky, flooding interior spaces with light. Corridors around the ellipse are extra wide and furnished with comfortable armchairs and couches to serve as gathering places for students and faculty. 

Click image for information.

The use of natural light is among the design features that earned the building Leadership in Energy and Environmental Design (LEED) silver certification from the U.S. Green Building Council. Other features include energy-efficient fixtures, materials that come from rapidly renewable resources or include recycled content, reduced water use, a green roof, and plantings that capture stormwater runoff from paved surfaces and filter it into the soil.

At the base of the ellipse, the Gluckstern Garden honors the memory of Robert L. Gluckstern, who was a UMD physicist and former chancellor of the University of Maryland (this position is now called president). The glass-walled lobby has a café and views of the garden and the plaza surrounding the building.

University officials hoped the new facility would boost recruitment of leading scientists, and this is already proving true. This year two top experimental condensed matter physicists joined the Joint Quantum Institute, which also has recruited a higher number of promising young graduate students to attend UMD this fall than in years past. 

The building is also attracting stars of a different kind. Its striking architecture earned it a role in an upcoming episode of “Veep,” the Emmy-award-winning HBO comedy starring Julia Louis-Dreyfus, which airs April 27, 2014.

--University of Maryland/College of Computer, Mathematical, and Natural Sciences--

Media contact: Heather Dewar, 301-405-9267, This email address is being protected from spambots. You need JavaScript enabled to view it.

Watch a video highlighting the grand opening celebration: http://youtu.be/aSA8YfLNcAY

Watch the full grand opening celebration: http://youtu.be/MHCuaLZq4z8

University President Wallace D. Loh’s spring video message was filmed in the PSC:
http://www.president.umd.edu/multimedia/spring2014message.cfm

Learn more about the Physical Sciences Complex: http://cmns.umd.edu/psc

Nobel laureates, top particle physicists speak at UMD April 11-12

Two Nobel Prize winning physicists, including a 2013 Nobel laureate who predicted the Higgs boson, and the physicists who discovered quarks and “color,” were among the distinguished speakers at an April 11-12, 2014 University of Maryland symposium highlighting discoveries that sparked a physics revolution.

The sold-out event, "50 Years of Quarks & Color" recounted how our understanding of quarks has evolved since their discovery in 1964. The discovery of quarks, the building blocks of protons and neutrons, deepened our understanding of particle physics. This discovery and the concept that quarks carry different “colors,” or charges that explain their strong interactions, led to The Standard Model of Particle Physics, which explains what the world is and what holds it together. The symposium also highlighted future directions of particle physics research that will ultimately lead to a deeper understanding of nature.

In addition to Nobel laureates François Englert and Frank Wilczek, featured speakers included University of Maryland Physics Professor O.W. (Wally) Greenberg, who proposed that quarks have “color” charges; George Zweig, who proposed the existence of quarks; and Robbert Dijkgraff, director of the Institute for Advanced Study. More than a dozen other history-making physicists spoke at the event, which ran from 8:30 a.m. April 11 through 6:30 p.m. April 12 at College Park Marriott Hotel & Conference Center, 3501 University Blvd., East Hyattsville, MD 20783.

 

Researchers See Kelvin Wave on Quantum “Tornado” for First Time

Click image for information.

Draining the water from a bathtub causes a spinning tornado to appear. The downward flow of water into the drain causes the water to rotate, and as the rotation speeds up, a vortex forms that obeys the laws of classical mechanics. However, if the water is extremely cold liquid helium, the fluid will swirl around an invisible line to form a vortex that obeys the laws of quantum mechanics. Sometimes, two of these quantum tornadoes flex into curved lines, cross over one another to form a letter X shape, swap ends, and then violently retract from one another—a process called reconnection.

Computer simulations have suggested that after the vortexes snap away from each other, they develop ripples called “Kelvin waves” to quickly get rid of the energy caused by the connection and relax the system. However, the existence of these waves had never been experimentally proven.

Now, for the first time, researchers provide visual evidence confirming that the reconnection of quantum vortexes launches Kelvin waves. The study, which was conducted at the University of Maryland, will be published the week of March 24, 2014 in the online early edition of the journal Proceedings of the National Academy of Sciences. The research was supported by the National Science Foundation.

“We weren’t surprised to see the Kelvin waves on the quantum vortex, but we were excited to see them because they had never been seen before,” said Daniel Lathrop, a UMD physics professor. “Seeing the Kelvin waves provided the first experimental evidence that previous theories predicting they would be launched from vortex reconnection were correct.”

Understanding turbulence in quantum fluids, such as ultracold liquid helium, may offer clues to neutron stars, trapped atom systems and superconductors. Superconductors, which are materials that conduct electricity without resistance below certain temperatures, develop quantized vortices. Understanding the behavior of the vortices may help researchers develop superconductors that remain superconducting at higher current densities.

Physicists Richard Feynman and Lars Onsager predicted the existence of quantum vortices more than a half-century ago. However, no one had seen quantum vortices until 2006. In Lathrop’s laboratory at UMD, researchers prepared a cylinder of supercold helium—at 2 degrees Celsius above absolute zero—injected with frozen tracer particles made from atmospheric air and helium gases. When they shined a laser into the cylinder, the researchers saw the particles trapped on the vortices like dew drops on a spider web.

“Kelvin waves on quantized vortices had been predicted, but the experiments were challenging because we had to conduct them at lower temperatures than our previous experiments,” explained Lathrop.

Since 2006, the researchers have used the same technique to further examine quantum vortexes. During an experiment in February 2012, they witnessed a unique reconnection event. One vortex reconnected with another and a wave propagated down the vortex. To quantitatively study the wave’s motion, the researchers tracked the position of the particles on the vortex. The resulting waveforms agreed generally with theories of Kelvin waves propagating from quantum vortexes.

“These first observations of Kelvin waves will surely lead to exciting new experiments that push the limits of our knowledge of these exotic quantum motions,” added Lathrop.

In the future, Lathrop plans to use florescent nanoparticles to investigate what happens near the transition to the superfluid state.

Lathrop conducted the current study with David Meichle, a UMD physics graduate student; Enrico Fonda, who was a research scholar at UMD and graduate student at the University of Trieste when the study was performed and is now a postdoctoral researcher at New York University; Nicholas Ouellette, who was a visiting assistant professor at UMD when the study was performed and is now an associate professor in mechanical engineering & materials science at Yale University; and Sahand Hormoz, a postdoctoral researcher at the University of California, Santa Barbara’s Kavli Institute for Theoretical Physics.

This research was supported by the National Science Foundation (NSF) under Award No. DMR-0906109. The content of this article does not necessarily reflect the views of the NSF.

The research paper, “Direct observation of Kelvin waves excited by quantized vortex reconnections,” Enrico Fonda, David P. Meichle, Nicholas T. Ouellette, Sahand Hormoz, and Daniel P. Lathrop, published the week of March 24, 2014 in the online early edition of the journal Proceedings of the National Academy of Sciences.