UMD Physicists Play Major Roles in Four of AIP's Top Ten Physics Discoveries of 2008

Editors and science writers at the American Institute of Physics and the American Physical Society selected a list of Top Ten Physics Stories in 2008. The selections were released on December 22, 2008 and included four discoveries in which UMD Physicists had major roles (Large Hadron Collider, Quarks , Ultracold Molecules and Cosmic Rays).

To view the full article, visit:

Robert Gluckstern: 1924 - 2008

Bob Gluckstern passed away December 17, 2008.

Bob was a brilliant physicist and superb administrator. He received his PhD from MIT in 1948, was a postdoc/assistant professor/associate professor at Yale until 1964, and a Professor at the University of Massachusetts, Amherst, as Chair of the Physics Department for 5 years, and Provost until 1975. He was Chancellor here (the same position is called President now) from 1975 to 1982, when he stepped down to return to full-time teaching and research. He did research in many fields, from early work in coulomb scattering, nucleon scattering, relativistic electrodynamics, to more recent work in accelerator theory and non- linear dynamics. As an aside, he was a long time participant in the Maryland Choir. As another aside, Bob once wrote a paper on how to calculate the uncertainties in the measurement of the curvature (and hence the momentum) of charged tracks in magnetic fields due to multiple scattering and measurement errors. This paper had a huge impact in the field of particle physics.

Bob was an extraordinary physicist who had a pure and deep understanding of the material. In the past few years, true to form, Bob played an important role in the Slawsky clinic. He really enjoyed having contact with the students. Indeed, while Chancellor, he was also a TA in Physics and Math (assisting both Jordan Goodman and Vic Korenman). He was a superb teacher and human being to the end, and he fought a hard fight with cancer. We will miss him, his rich New Yawk accent, his good nature, his perspective, his brilliance, and his friendship.

--Drew Baden, Chair
Obituary in The Washington Post.

Nicholas Hadley Elected Fellow of AAAS

Nicholas Hadley, Professor and Associate Chair of Undergraduate Studies, has been named a Fellow of the American Association for the Advancement of Science (AAAS). Election as a Fellow is an honor bestowed upon AAAS members by their peers.

This year 486 members have been awarded this honor by AAAS because of their scientifically or socially distinguished efforts to advance science or its applications. New Fellows will be presented with an official certificate and a gold and blue (representing science and engineering, respectively) rosette pin on Saturday, 14 February from 8 to 10 a.m. at the AAAS Fellows Forum during the 2009 AAAS Annual Meeting in Chicago.

As part of the Section on Physics, Dr. Hadley was elected as an AAAS Fellow for his leadership role in the discovery of the top quark and his contributions to searches for phenomena beyond the standard model of particle physics.

Dr. Hadley joined the University of Maryland as an Associate Professor in 1988. He is an experimental physicist working in the field of High Energy Physics (HEP). Skilled in the development and construction of detectors for the primary observation of charged and neutral particles, he has been very successful in data analysis and physics interpretation of HEP data. He did important work at Brookhaven on rare decays of “strange” particles, published the first paper at the Fermilab Dzero experiment on “leptoquarks,” and spearheaded the analysis efforts at Dzero that led to the discovery of the top quark at Dzero in 1995. He is internationally recognized for his many important leadership roles in the large collaboration of physicists and technical personnel that constitute an active HEP physics experiment, having been on the program advisory committees of Brookhaven and Fermilab, among other leadership positions


The tradition of AAAS Fellows began in 1874. Currently, members can be considered for the rank of Fellow if nominated by the steering groups of the Association’s 24 sections, or by any three Fellows who are current AAAS members (so long as two of the three sponsors are not affiliated with nominee’s institution) , or by the AAAS chief executive officer. For more information regarding the non-profit AAAS, visit .

MILAGRO Detects Cosmic Ray Hot Spots

The University of Maryland-led Milagro collaboration, comprised of scientists from 16 institutions across the United States, has discovered two nearby regions with an unexpected excess of cosmic rays. 

This is the second finding of a source of galactic cosmic rays relatively near Earth announced in the past week. In the November 20 issue of the journal Nature, ATIC an international experiment lead by LSU scientists and conceived by a University of Maryland physicist announced finding an unexpected surplus of cosmic-ray electrons from an unidentified, but relatively close source.

“These two results may be due to the same, or different, astrophysical phenomenon, said Jordan Goodman, a University of Maryland professor of physics and principal investigator for Milagro. However, they both suggest the presence of high-energy particle acceleration in the vicinity of the earth. Our new findings [published in the November 24 issue of Physical Review Letters] point to general locations for the localized excesses of cosmic-ray protons observed with the Milagro observatory.

Cosmic rays are actually charged particles, including protons and electrons, that are accelerated to high energies from sources both outside and inside our galaxy. It’s unknown exactly what these sources are, but scientists theorize they may include supernovae -- massive stars that explode -- quasars or perhaps from other even more exotic, less-understood sources within the universe. Until recently, it was widely held that cosmic-ray particles came toward Earth uniformly from all directions. These new findings are the strongest indications yet that the distribution of cosmic rays is not so uniform.

When these high energy cosmic ray particles strike the Earth's atmosphere, a large cascade of secondary particles are created in an extensive “air shower.” The Milagro observatory, located near the Los Alamos National Lab in New Mexico, 'sees' cosmic rays by observing the energetic secondary particles that make it to the surface.

Jordan and his Milagro colleagues used the cosmic-ray observatory to peer into the sky above the northern hemisphere for nearly seven years starting in July 2000. The Milagro observatory is unique in that it monitors the entire sky above the northern hemisphere. Its design and field of view, made it possible for the observatory to record over 200 billion cosmic-ray collisions with the Earth’s atmosphere.

This allowed researchers for the first time to see statistical peaks in the number of cosmic-ray events originating from relatively small regions of the sky. Milagro observed an excess of cosmic ray protons in an area above and to the right of Orion, near the constellation Taurus. The other hot spot is a comma-shaped region in the sky near the constellation Gemini.

“Whatever the source of the protons we observed with Milagro, their path to Earth is deflected by the magnetic field of the Milky Way so that we cannot directly tell exactly where they originate,” said Goodman. “And whether the regions of excess seen by Milagro actually point to a source of cosmic rays, or are the result of some other unknown nearby effect is an important question raised by our observations.”

Even more revelatory observations of cosmic rays and further help solving the mystery of the origin of cosmic rays may come in the form of a new observatory that Jordan and his fellow U.S. Milagro scientists have partnered with colleagues in Mexico to propose to the National Science Foundation. This second-generation experiment named the High Altitude Water Cherenkov experiment (HAWC) would be built at a high-altitude site in Mexico.

The National Science Foundation (NSF) funded construction of the Milagro through the University of Maryland. The observatory’s work was funded by NSF, the US Department of Energy, Los Alamos National Laboratory, and the University of California. For more information on Milagro and HAWC, visit the University of Maryland HAWC website: or contact Jordan Goodman (This email address is being protected from spambots. You need JavaScript enabled to view it.) or Brenda Dingus (This email address is being protected from spambots. You need JavaScript enabled to view it.).

In Science News: