$31M Grant Targets Quantum Computing’s Error Control Challenge
- Details
- Published: Wednesday, January 06 2016 08:42
A team of researchers led by Duke University and the University of Maryland has been tapped by the nation’s “Q Branch” to take quantum computing efforts to the next level using one of the field’s leading technologies—ion traps.
The Intelligence Advanced Research Projects Activity (IARPA) invests in high-risk, high-payoff research programs to tackle some of the most difficult challenges in the intelligence community. One of these challenges is dealing with encryption. Codes considered unbreakable by today’s best supercomputers could be handled in a matter of hours by quantum computers.
The basic building blocks of a quantum device are qubits. These are the quantum mechanical analogue of a traditional logical bit, which can be in a “1” or a “0” state. Quantum physics allows for qubits to take on multiple configurations simultaneously (e.g. an equally-weighted superposition of 0 and 1), which is forbidden in conventional computing. When scientists in the 1990s proved that this strange property could be harnessed for solving certain tasks, such as decryption, the quantum information revolution began.
While researchers have proven that robust qubits can be built, scaling them into large networks while detecting and correcting errors remains a challenge.
IARPA awarded the Duke/Maryland/Georgia Tech partnership a five-year, $31.9 million grant through its program dubbed LogiQ. Their goal is to bring together a large number of atomic qubits to realize modular “super-qubits” that can be scaled up while correcting for errors. This major multi-year award is led by Jungsang Kim (Duke University), Christopher Monroe (University of Maryland and the Joint Quantum Institute) and Ken Brown (Georgia Tech).