Biography
- Simons Emmy Noether Faculty Research Fellowship (2024)
- Alfred P. Sloan Fellowship (2019)
- Department of Energy's Early Career Award (2019)
- Kenneth Wilson Award in Lattice Gauge Theory (2018)
Research
Research Area:
Research goals include:
1) Developing and applying effective field theories and lattice quantum chromodynamics (LQCD) technique aiming at: i) A reliable determination of nuclear and hypernuclear few-body interactions to supplement experimental nuclear-physics programs worldwide, such as the facility for rare isotope beams (FRIB), and to refine studies of extreme astrophysical environment, such as the interior of neutron stars. ii) Constraining hadronic contributions to Standard Model and beyond-the-Standard Model processes, with an impact on both low-energy nuclear physics and high-energy particle physics research, removing some of the long-standing uncertainties in reactions such as those occurring in sun or in fusion research facilities, the cross section of various dark-matter candidates scattering off heavy nuclei in experiments, and the rate of exotic processes such as the neutrinoless double-beta decay.
2) Developing and benchmarking frameworks for quantum simulation of lattice gauge theories and nuclear effective field theories, in light of rapid progress in quantum-computing technologies worldwide. A long-term goal of this research is to combat the long-standing sign problem inherent in traditional Monte Carlo computations of fermionic systems (relevant for studies of dense matter in nature) and real-time dynamics of strongly-interacting matter (relevant for studies of the evolution of matter after Big Bang or after the collision of heavy nuclei in experiments). This problem can potentially be eliminated through mapping and tracking the dynamics of the systems on a quantum simulator. Both the algorithmic developments for efficient implementations of the problems on near-term and future digital quantum-computing platforms, as well as accurate engineering of Hamiltonians of controlled quantum systems for implementations on analog quantum simulators (e.g., ion-trap platforms) are pursued for benchmark problems
Centers & Institutes:
Teaching
- Physics 411: Intermediate Electricity and Magnetism
- Physics 604: Methods of Mathematical Physics
- Physics 624: Advanced Quantum Mechanics
-
Physics 798: Advanced training in QCD, effective field theories and lattice QCD I, II (Fall 2018, Spring 2019)
News
- Particle Physics and Quantum Simulation Collide in New Proposal
- Quantum Computers Are Starting to Simulate the World of Subatomic Particles
- UMD Leads New $25M NSF Quantum Leap Challenge Institute for Robust Quantum Simulation
- A Physics Career of a Thousand Steps
- Plotting the Future of Particle Physics Research
- Charting a Course Toward Quantum Simulations of Nuclear Physics
- Davoudi, Manucharyan Receive DOE Early Career Research Funding
- Zohreh Davoudi Receives 2019 Sloan Research Fellowship
- Davoudi Receives Ken Wilson Award
- New Members of the Department of Physics