Quantum Gases Won’t Take the Heat

The quantum world blatantly defies intuitions that we’ve developed while living among relatively large things, like cars, pennies and dust motes. In the quantum world, tiny particles can maintain a special connection over any distance, pass through barriers and simultaneously travel down multiple paths.

A less widely known quantum behavior is dynamical localization, a phenomenon in which a quantum object stays at the same temperature despite a steady supply of energy—bucking the assumption that a cold object will always steal heat from a warmer object.

This assumption is one of the cornerstones of thermodynamics—the study of how heat moves around. The fact that dynamical localization defies this principle means that something unusual is happening in the quantum world—and that dynamical localization may be an excellent probe of where the quantum domain ends and traditional physics begins. Understanding how quantum systems maintain, or fail to maintain, quantum behavior is essential not only to our understanding of the universe but also to the practical development of quantum technologies.

“At some point, the quantum description of the world has to changeover to the classical description that we see, and it's believed that the way this happens is through interactions,” says UMD postdoctoral researcher Colin Rylands of the Joint Quantum Institute.UCSB labEquipment at the University of California, Santa Barbra for creating and manipulating quantum gases. It is being used to investigate the dynamical localization of interacting atoms, which is related to new work by JQI researchers. (Credit: Tony Mastres, UCSB)

Until now, dynamical localization has only been observed for single quantum objects, which has prevented it from contributing to attempts to pin down where the changeover occurs. To explore this issue, Rylands, together with Prof. Victor Galitski and other colleagues, investigated mathematical models to see if dynamical localization can still arise when many quantum particles interact. To reveal the physics, they had to craft models to account for various temperatures, interaction strengths and lengths of times. The team’s results, published in Physical Review Letters, suggest that dynamical localization can occur even when strong interactions are part of the picture.

“This result is an example of where a single quantum particle behaves completely differently from a classical particle, and then even with the addition of strong interactions the behavior still resembles that of the quantum particle rather than the classical,” says Rylands, who is the first author of the article.

A Quantum Merry-Go-Round

The result extends dynamical localization beyond its single-particle origins, into the regime of many interacting particles. But in order to visualize the effect, it’s still useful to start with a single particle. Often, that single particle is discussed in terms of a rotor, which you can picture as a playground merry-go-round (or anything else that spins in a circle). The energy of a rotor (and its temperature) is directly related to how fast it is spinning. And a rotor with a steady supply of energy—one that is given a regular “kick”—is a convenient way of visualizing the differences in the flow of energy in quantum and classical physics.

For example, imagine Hercules tirelessly swiping at a merry-go-round. Most of his swipes will speed it up, but occasionally a swipe will land poorly and slow it down. Under these (imaginary) conditions, a normal merry-go-round would spin faster and faster, building up more and more energy until vibrations finally shake the whole thing apart. This represents how a normal rotor, in theory, can heat up forever without hitting an energy limit.

In the quantum world, things go down differently. For a quantum merry-go-round each swipe doesn’t simply increase or decrease the speed. Instead, each swipe produces a quantum superposition over different speeds, representing the chance of finding the rotor spinning at different rates. It’s not until you make a measurement that a particular speed emerges from the quantum superposition caused by the preceding kicks.

Previous research, both theoretical and experimental, has shown that at first a quantum rotor doesn’t behave very differently from a normal rotor because of this distinction—on average a quantum merry-go-round will also have more energy after experiencing more kicks. But once a quantum rotor has been kicked enough, its speed tends to plateau. After a certain point, the persistent effort of our quantum Hercules fails to increase the quantum merry-go-round’s energy (on average).

This behavior is conceptually similar to another thermodynamics-defying quantum phenomenon called Anderson localization. Philip Anderson, one of the founders of condensed-matter physics, earned a Noble Prize for the discovery of the phenomenon. He and his colleagues explained how a quantum particle, like an electron, could become trapped despite many apparent opportunities to move. They explained that imperfections in the arrangement of atoms in a solid can lead to quantum interference among the paths available to a quantum particle, changing the likelihood of it taking each path. In Anderson localization, the chance of being on any path becomes almost zero, leaving the particle trapped in place.

Dynamical localization looks a lot like Anderson localization but instead of getting trapped at a particular position, a particle’s energy gets stuck. As a quantum object, a rotor’s energy and thus speed are restricted to a set of quantized values. These values form an abstract grid or lattice similar to the locations of atoms in a solid and can produce an interference among energy states similar to the interference among paths in physical space. The probabilities of the different possible energies, instead of the possible paths of a particle, interfere, and the energy and speed get stuck near a single value, despite ongoing kicks.

Exploring a New Quantum Playground

While Anderson localization provided researchers with a perspective to understand a single kicked quantum rotor, it left some ambiguity about what happens to many interacting rotors that can toss energy back and forth. A common expectation was that the extra interactions would allow normal heating by disrupting the quantum balance that limits the increase of energy.

Galitski and colleagues identified a one-dimensional system where they thought the expectation may not hold true. They chose an interacting one-dimensional Bose gas as their playground. In a Bose gas, particles zipping back and forth down a line play the part of the rotors spinning in place. The gas atoms follow the same basic principles as kicked rotors but are more practical to work with in a lab. In labs, lasers can be used to contain the gas and also to cool the atoms in the gas down to a low temperature, which is essential to ensuring a strong quantum behavior.

Once the team selected this playground, they explored mathematical models of the many interacting gas atoms. Exploring the gas at a variety of temperatures, interaction strengths and number of kicks required the team to switch between several different mathematical techniques to get a full picture. In the end their results combined to suggest that when a gas with strong interactions starts near zero temperature it can experience dynamical localization. The team named this phenomenon “many-body dynamical localization.”

"These results have important implications and fundamentally demonstrate our incomplete understanding of these systems," says Robert Konik, a coauthor of the paper and physicist at Brookhaven National Lab. "They also contain the seed of possible applications because systems that do not accept energy should be less sensitive to quantum decoherence effects and so might be useful for making quantum computers."

Experimental Support

Of course, a theoretical explanation is only half the puzzle; experimental confirmation is essential to knowing if a theory is on solid ground. Fortunately, an experiment on the opposite coast of the U.S. has been pursuing the same topic. Conversations with Galitski inspired David Weld, an associate physics professor at the University of California, Santa Barbra, to use his team’s experimental expertise to probe many-body dynamical localization.

“Usually it's not easy to convince an experimentalist to do an experiment based on theory,” says Galitski. “This case was kind of serendipitous, that David already had almost everything ready to go.”

Weld’s team is using a quantum gas of lithium atoms that is confined by lasers to create an experiment similar to the theoretical model Galitski’s team developed. (The main difference is that in the experiment the atoms move in three dimensions instead of just one.)

In the experiment, Weld and his team kick the atoms hundreds of times using laser pulses and repeatedly observe their fate. For different runs of the experiment they tuned the interaction strength of the atoms to different values.

“It's nice because we can go to a noninteracting regime quite perfectly, and that's something that it's pretty easy to calculate the behavior of,” says Weld. “And then we can continuously turn up the interaction and move into a regime that's more like what Victor and his coworkers are talking about in this latest paper. And we do observe localization, even in the presence of the strongest interactions that we can add to the system. That's been a surprise to me.”

Their preliminary results confirm the prediction that many-body dynamical localization can occur even when strong interactions are part of the picture. This opens new opportunities for researchers to try to pin down the boundary between the quantum and classical world.

“It's nice to be able to show something that people didn't expect and also for it to be experimentally relevant,” says Rylands.

Story by Bailey Bedford

In addition to Rylands, Galitski and Konik, former JQI graduate student Efim Rozenbaum, who is now a consultant with Boston Consulting Group, was also a co-author of the paper.

Research Contact: Colin Rylands This email address is being protected from spambots. You need JavaScript enabled to view it.
 
Media Contact: Bailey Bedford This email address is being protected from spambots. You need JavaScript enabled to view it.
 

Grad Students' Theses Honored

Christopher Eckberg has received the Charles A. Caramello Distinguished Dissertation Award from the University of Maryland Graduate School.Eckberg CChris Eckberg

The Caramello Distinguished Dissertation Award recognizes original work that makes an unusually significant contribution to the discipline. Eckberg’s thesis, Superconducting Enhancement in a Tunable Electronic Nematic System, was selected by a multi-disciplinary campus committee chaired by Professor Patricia Alexander from the Department of Human Development and Quantitative Methodology.  The prize carries an honorarium of $1,000.

Eckberg worked with Johnpierre Paglione of the Quantum Materials Center. After his graduation from UMD, Eckberg joined the Kang Wang group in the Electrical and Computer Engineering Department at UCLA.

young jeremy jqiJeremy Young

Jeremy Young was cited with an Honorable Mention in the competition for his thesis, Nonequilibrium Dynamics in Open Quantum Systems. Young worked with Alexey Gorshkov of the Joint Quantum Institute, and is now a postdoctoral researcher at the JQI.

Plotting the Future of Particle Physics Research

Three University of Maryland researchers have been elected co-conveners of topical groups that will help determine the future of particle physics research.  

The Snowmass Process is organized by the Division of Particles and Fields (DPF) of the American Physical Society. Snowmass facilitates discussion among high energy physicists for review by the Particle Physics Project Prioritization Panel (P5), which will identify and prioritize the most valuable areas of particle physics study in the years to come. The last P5 report was issued in May, 2014.

Associate Professor Alberto Belloni was named co-convener for the electroweak precision physics and constraining physics subgroup of the energy frontier group.  Because of the Heisenberg uncertainty principal, precise measurements of the known particles and their properties can reveal the presence of heavy as-of-yet undiscovered particles.  Measurements of this type foretold both the discovery of the top quark and the Higgs boson. Belloni has held various leadership appointments at the Compact Muon Solenoid experiment at CERN. He joined UMD in 2013.

Also in the energy frontier group, Zhen Liu was named co-convener for the more general explorations of Beyond the Standard Model physics. Such studies are key to understanding the discovery potential of proposed future particle colliders. Liu is a postdoctoral researcher at the Maryland Center for Fundamental Physics (MCFP). He received his Ph.D. from the University of Pittsburgh in 2015.

In the theory frontier group, Assistant Professor Zohreh Davoudi was elected co-convener of the lattice gauge theory discussion. Davoudi joined UMD in 2017 and has since received an Early Career Award from the Department of Energy, a Sloan Research Award and the Ken Wilson Award. She is also a member of MCFP.

Alumna Mirjam Cvetic (Ph.D., ’84) serves on the DPF Executive Committee and Snowmass 2021 Advisory Group. Haibo Yu (Ph.D., ‘07) is a co-convener in dark matter astronomy probes and Ira Rothstein (Ph.D., ’92) will work on effective field theory techniques.

Mohapatra's Pioneering "Seesaw" Work Noted

A paper by Distinguished University Professor Rabi Mohapatra has been named one of the three most influential titles in the first fifty years of Physical Review D, which was established to cover the fields of particles, fields, gravitation, and cosmology.

The “neutrino mass seesaw" paper written with Goran Senjanović (his former student, then a post-doc at the University of Maryland), has helped theorists better assess neutrinos and has inspired various experimental quests, as noted in Physics magazine.MohapatraRabi Convocation 2016Mohapatra honored as a Distinguished University Professor, Sept. 14, 2016.

Mohapatra received his Ph.D. from the University of Rochester in 1969, under the guidance of Robert Marshak and Susumu Okubo. After postdoctoral appointments at Stony Brook University and this campus, he joined the faculty of the City College of New York before returning to the University of Maryland as a full professor.

In addition to the neutrino mass seesaw paper, Mohapatra is well-known for being one of the co-proponents of the left-right symmetric theories of weak interactions, proposed during his UMD postdoctoral position in 1974.  He also proposed the experimental search for neutron-anti-neutron oscillation and the idea of the massless particle majoron. He has also worked extensively on SO(10) grand unification.

Mohapatra is a Fellow of the American Physical Society, a member of the Indian Academy of Sciences, a recipient of the Alexander von Humboldt Prize and a University of Maryland Distinguished Scholar-Teacher. In 2016, he was named a Distinguished University Professor.

==============

Reference paper: R. Mohapatra and G. Senjanović, “Neutrino masses and mixings in gauge models with spontaneous parity violation,” Phys. Rev. D 23, 165 (1981).