James J. Griffin, 1930-2022

Professor Emeritus James J. Griffin died on December 13, 2022.

Griffin earned his Ph.D. in theoretical physics at Princeton University in 1956 and then accepted a Fulbright Scholarship to the Institute for Theoretical Physics in Copenhagen. Following a National Science Foundation Fellowship at the University of Birmingham and an appointment as a Visiting Lecturer at the University of Wisconsin, he joined UMD as an assistant professor in 1966. He was promoted to associate professor and full professor in 1968 and 1973, respectively. In the 1968-69 academic year, Griffin served as Associate Chair of the UMD Department of Physics and Astronomy.

Griffin studied nuclear structure and heavy ions, and was perhaps best known for his publication, “The statistical model of intermediate structure,” which appeared in Physical Review Letters.  He received a John Simon Guggenheim Foundation Fellowship to work at the Lawrence Berkeley Laboratory in 1972-73. In 1975, he received an Alexander von Humboldt Foundation Senior Scientist Fellowship and worked at the Justus Liebig University in Giessen and the Hahn Meitner Institute for Nuclear Research in Berlin.   

During his career, Griffin also enjoyed visiting positions at Los Alamos National Laboratory, Oak Ridge National Laboratory, the University of California in Berkeley, and several institutions in France and Germany. He was an invited guest lecturer in Germany, Canada, Poland, China, Israel, Japan, France and Romania. 

A memorial is planned for the spring. If you'd like to be notified when it is scheduled, please contact This email address is being protected from spambots. You need JavaScript enabled to view it..

Wolfgang Losert Elected AAAS Fellow

Wolfgang Losert  has been elected a Fellow of the American Association for the Advancement of Science. Wolfgang Losert. Credit: UMD/Lisa Helfert. Wolfgang Losert. Credit: UMD/Lisa Helfert.

In his research, Losert aims to discover emergent dynamic properties of complex systems at the interface of physics and biology. He currently leads a Multidisciplinary University Research Initiative program funded by the Air Force Office of Scientific Research that transformed our understanding of how cells sense their physical environment. He also serves as co-principal investigator on a Brain Research through Advancing Innovative Neurotechnologies (BRAIN) initiative center grant from the National Institutes of Health focused on information processing in sensory brain circuits.

Losert actively fosters cross-disciplinary interactions and new research and educational opportunities on campus and beyond. He helped launch and currently co-leads the American Physical Society Group on Data Science. He was part of a trans-university initiative of the Howard Hughes Medical Institute (called NEXUS) that developed new science and math courses for biology majors and pre-health care students that are being widely adopted. He led the development of and co-directs the NCI-UMD Partnership for Integrative Cancer Research, which provides UMD faculty members and graduate students the opportunity to tackle pressing problems in cancer research in collaboration with National Cancer Institute experts. 

A Fellow of the American Physical Society, Losert joined UMD in 2000 as an assistant professor and served as an associate dean in CMNS (2014-22) and as interim IPST director (2019-20). He earned his Ph.D. in physics from the City College of the City University of New York in 1998 and his diplom in applied physics from the Technical University of Munich in Germany in 1995.

Also elected from the College of Computer, Mathematical, and Natural Sciences (CMNS) were  mathematician Abba Gumel and computer scientists Mohammad Hajiaghayi  and Dana Nau.

“I join the CMNS community in congratulating Professors Gumel, Hajiaghayi, Losert and Nau on their well-deserved election as AAAS Fellows,” said CMNS Dean Amitabh Varshney. “This is an affirmation of what we already know—that they are each pushing the boundaries in their respective fields and making a significant impact on the grand challenges our society faces today.”

UMD’s 2022 Fellows, seven in total, join a class of 506 new Fellows who have moved their fields forward, paving the way for scientific advances that benefit society. They bring diverse and novelty thinking, innovative approaches and passion that will help solve the world’s most complex problems, according to AAAS’s announcement.

“AAAS is proud to elevate these standout individuals and recognize the many ways in which they’ve advanced scientific excellence, tackled complex societal challenges and pushed boundaries that will reap benefits for years to come,” Sudip S. Parikh, AAAS chief executive officer and executive publisher of the Science family of journals, said in an announcement. 

Distinguished University Professor Ed Ott Retires

Distinguished University Professor Ed Ott retired in December, having served on the UMD faculty for a remarkable and stellar 43 years. Ott is globally known for his pioneering contributions in nonlinear dynamics and chaos theory. 

"Ed has had a magnificient career, exploring and explaining chaos and helping researchers to understand its impact across disciplines," said Physics chair Steve Rolston. 

In recent years, Ott was instrumental in sparking intense activity in applying machine learning to nonlinear dynamics, giving keynote lectures and invited talks in several countries. For the AIP journal Chaos he was asked to co-edit a special 2020 issue: When machine learning meets complex systems: Networks, chaos, and nonlinear dynamics.

Ott, a member of the National Academy of Sciences, is a University of Maryland Distinguished University Professor and holder of the Yuen Sang and Yu Yuen Kit So Endowed Professorship in nonlinear dynamics. He received the 2014 Julius Edgar Lilienfeld Prize of the American Physical Society, and in 2016, with  Celso Grebogi and James A. Yorke, was named a Thomson Reuters Citation Laureate in physics for "...development of a control theory of chaotic systems."

In 2017,  Ott received the Lewis Fry Richardson Medal of the European Geosciences Union for pioneering contributions in the theory of chaos.  Also in 2017, he was selected for the JĂĽrgen Moser Lecture and Award, of the Society for Industrial and Applied Mathematics "... for his extensive and influential contributions to nonlinear dynamics, including seminal work on chaos theory and on the dynamics of physical systems." He was elected a foreign member of the Academia Europaea for his outstanding achievements and international scholarship as a researcher.  

Ott is a Fellow of the Society for Industrial and Applied Mathematics, the American Physical Society and the Institute of Electrical and Electronics Engineers.  He has served as an editor or editorial board member for most renowned journals in his field, including Physica D, Physical Review Letters, Physics of Fluids, Physical Review, Chaos and Dynamics and Stability of Systems.  

Ott received his B.S. in Electrical Engineering at The Cooper Union and his M.S. and Ph.D. in Electrophysics from the Brooklyn Polytechnic Institute, then enjoyed a postdoctoral fellowship at the Department of Applied Mathematics and Theoretical Physics of Cambridge University. Upon his return to the U.S., he joined the Electrical Engineering faculty at Cornell. He left Ithaca in 1979 to join the Department of Physics and Department of Electrical Engineering on this campus. He is a member of the Institute for Research in Electronics and Applied Physics (IREAP), and has held appointments at the Naval Research Lab and what is now the Kavli Institute for Theoretical Physics at the University of California, Santa Barbara. 

In addition to more than 500 papers, Ott has written the book "Chaos in Dynamical Systems", and edited "Coping with Chaos,"  a collection of reprints that focuses on how scientists observe, quantify, and control chaos.   He has advised more than 50 doctoral students, starting with Distinguished University Professor Tom Antonsen at Cornell University (1977) and most recently including Amitava Banerjee (2022).

 

Rehearsals, Recitals and Research

University of Maryland physics and astronomy dual-degree senior Delina Levine got her first introduction to music when she just was six years old, soon after she pestered her parents to sign her up for piano lessons. Delina LevineDelina Levine

As her fingers rhythmically tapped the black and white keys, Levine noticed that the sounds she created with the piano differed depending on the amount of force her hands exerted on the keys. Applying the piano’s pedals while she played created variations in the sounds she produced and while some chords harmonized, others didn’t. It wasn’t until years later that she learned why and how these changes influenced the music she played.

In middle school, her teacher asked the students to write a paper on any topic, so long as that topic tied back to math. Although Levine was skeptical, her teacher assured her that there was a mathematical connection to almost anything she could think of. 

“Of course, I chose to write about music for that assignment,” Levine recalled. “I wasn’t sure at first, but when I researched for the paper, I got to learn about the relationship between math, physics and music. What really struck me was how physics is so involved in music, especially with concepts like acoustics. It was then that I realized how important physics is when it comes to understanding how things work.”

After that assignment, Levine believed physics could be the key to satisfying her natural inquisitiveness about music, stars and outer space. At UMD, Levine’s trifecta of interests prompted her to pursue a dual degree in astronomy and physics in addition to a minor in music performance. 

“My first year here, I attended a class taught by Professor Bhatti that talked about the detection and analysis of dark matter. I remember that the class made a big impression on me,” Levine explained. “That was a big step for me into the overlap between physics and astronomy.”

Levine also participated in the 2020 Student Summer Theoretical Physics Research Session (SSTPRS), a program developed by Distinguished University Professor of Physics S. James Gates Jr. Designed to introduce undergraduates to the world of experimental physics research, SSTPRS provided Levine’s first opportunity to see real-world applications for the science she learned in the classroom. 

“We spent the first few weeks learning the math and physics needed for the calculations we needed to make later in the program,” said Levine. “That summer, I worked on supersymmetry projects with a group of other undergrads like me, and it gave me critical insight into research and all of the collaborative effort behind it.”

According to Levine, UMD’s Society of Physics Students (SPS) has also been one of the most instrumental parts of her journey to becoming a full-fledged researcher. As a member since 2019, Levine participated in exclusive behind-the-scenes lab tours led by professors and industry physicists, professional development workshops and training sessions, field trips to the campus nuclear reactor and movie nights. In her sophomore year, Levine served as SPS board communications officer. By fall 2022, she was elected president—taking a leadership role in the organization that guided her since the beginning of her journey in physics. 

“All the camaraderie and knowledge-sharing that I experienced with SPS inspired me to get more involved with its activities and leadership,” Levine said. “I just wanted to continue that tradition and remind my peers that we’re all in this together.”

"As SPS president, Delina is an inspiring leader,” said Donna Hammer, SPS faculty advisor and director of education for UMD’s Department of Physics. “Her vision for SPS includes providing the opportunity for every physics major to feel included, informed and supported.”

Off-campus, Levine puts the skills she developed at UMD into practice. She currently works as an undergraduate research assistant at the National Astronomical Observatory of Japan (NAOJ), where she studies gamma-ray bursts. Since she started her remote position with NAOJ in 2021, Levine has already written on gamma rays, their luminosity and their potential to be used as a way to measure cosmological distances. 

“Although my work at NAOJ is done online, the research environment I’m part of is incredibly diverse. My colleagues are from different time zones and countries all over the world—Italy, India, Japan, just to name a few. I also have a female principal investigator, which is still a rare occurrence in the world of physics and astronomy,” Levine said. “I see her as a role model and mentor, and I’d like to become someone like that in the future for other young scientists. What I’ve learned from NAOJ and also UMD makes me feel better equipped to tackle future challenges and goals that may come to me as a researcher."

Despite her busy schedule, Levine continues to make time for music. Over the years, she accompanied choirs and played with jazz bands, which she says helped her explore her talents beyond her classical training and develop additional layers of flexibility. In May 2022, Levine performed a piano recital at the Clarice Smith Performing Arts Center to an audience full of her peers, something she hopes to do again before she graduates in May 2023. 

“Having these experiences with SPS, my music and my research is very fulfilling for me. I especially appreciate the collaborativeness, creativity and diversity of thought that all these parts of my life encourage,” Levine said. “As president of SPS, I really want to continue supporting my fellow physics students with more opportunities to support and learn from each other—just as SPS and my mentors have done for me.”