Irving and Renee Milchberg Endowed Lecture Premiered April 16

milchberglecture

On April 16, 2019, the UMD Department of Physics and College of Computer, Mathematical and Natural Sciences held the first Irving and Renee Milchberg Endowed Lecture. 

Professor Howard Milchberg, his wife Rena, and their three children established this lecture series in honor of Howard's parents. It aims to highlight the connections among science, truth, the human condition and a civil society.The inaugural Irving and Renee Milchberg Endowed Lecture, April 19, 2019.The inaugural Irving and Renee Milchberg Endowed Lecture, April 19, 2019.

Susan Eisenhower spoke on Lessons from 1945: Ethics, the War in Europe, and its Enduring LegacyEisenhower is the granddaughter of Dwight Eisenhower, the 34th President of the United States and the Supreme Allied Commander in the European theater during World War II.  She is an author and a policy analyst on issues including arms control, nuclear non-proliferation and international security, and is Chairman Emeritus at the Eisenhower Institute of Gettysburg College.

To learn more about the lecture series, please click here.

Gregory S. Boebinger Named 11th Carr Lecturer

boebingerSqGregory S. Boebinger, Director of the National High Magnetic Field Laboratory and a professor at Florida State University, will give the W.J. Carr Lecture on Tuesday, April 9 at 4 p.m. in room 1412 of the John S. Toll Physics Building.  His talk is entitled Exploring the Heart of Quantum Matter with Extreme Magnetic Fields.

On Monday, April 8, he will also give the CNAM Seminar, Using High Magnetic Fields to Reveal Critical Behavior Near Optimum Doping in High-Temperature Superconductivity at 4 p.m. in room 1201 Toll.

The W. J. Carr Lecture Series on Superconductivity and Advanced Materials was established by Dr. James L. Carr, (Ph.D., ’89), in honor of in honor of his father, Walter J. Carr. It aims to contribute to the advancement of students in the UMD physics program and the Center for Nanophysics and Advanced Materials.

Vladimir Manucharyan Receives Google Faculty Research Award

GoogleAIGoogle AI recently announced that JQI Fellow Vlad Manucharyan is among the recipients for this year's Google Faculty Research Awards. The program supports technical research in areas such as machine learning and quantum computing, the latter of which is Manucharyan's area of specialty. In the 2018 awards cycle the program funded 158 of the 910 proposed projects. 

Manucharyan, who is also the Alford Ward Professor of Physics at UMD, is a leading condensed matter experimentalist who uses superconducting circuits to make quantum bits, which underlie one type of quantum computer. This type of research is also an active area of development for Google AI. Beyond qubits, Manucharyan’s team is also exploring ways in which superconducting circuits can probe physics phenomena that remain out of reach for other quantum platforms.

Radioactive Material Detected Remotely Using Laser-induced Electron Avalanche Breakdown

New method developed by UMD researchers could be scaled up to improve security at ports of entry

Physicists at the University of Maryland have developed a powerful new method to detect radioactive material. By using an infrared laser beam to induce a phenomenon known as an electron avalanche breakdown near the material, the new technique is able to detect shielded material from a distance. The method improves upon current technologies that require close proximity to the radioactive material.

With additional engineering, a new method to detect radioactive material, developed by physicists at the University of Maryland, could be scaled up to scan shipping containers at ports of entry—providing a powerful new tool for security applications. Image credit: USDA/APHIS (Click image to download hi-res version.)With additional engineering, a new method to detect radioactive material, developed by physicists at the University of Maryland, could be scaled up to scan shipping containers at ports of entry—providing a powerful new tool for security applications. Image credit: USDA/APHIS (Click image to download hi-res version.)

With additional engineering advancements, the method could be scaled up and used to scan trucks and shipping containers at ports of entry, providing a powerful new tool to detect concealed, dangerous radioactive material. The researchers described their proof-of-concept experiments in a research paper published March 22, 2019 in the journal Science Advances.

“Traditional detection methods rely on a radioactive decay particle interacting directly with a detector. All of these methods decline in sensitivity with distance,” said Robert Schwartz, a physics graduate student at UMD and the lead author of the research paper. “The benefit of our method is that it is inherently a remote process. With further development, it could detect radioactive material inside a box from the length of a football field.”

As radioactive material emits decay particles, the particles strip electrons from—or ionize—nearby atoms in the air, creating a small number of free electrons that quickly attach to oxygen molecules. By focusing an infrared laser beam into this area, Schwartz and his colleagues easily detached these electrons from their oxygen molecules, seeding an avalanche-like rapid increase in free electrons that is relatively easy to detect.

“An electron avalanche can start with a single seed electron. Because the air near a radioactive source has some charged oxygen molecules—even outside a shielded container—it provides an opportunity to seed an avalanche by applying an intense laser field,” said Howard Milchberg, a professor of physics and electrical and computer engineering at UMD and senior author of the research paper. “Electron avalanches were among the first demonstrations after the laser was invented. This is not a new phenomenon, but we are the first to use an infrared laser to seed an avalanche breakdown for radiation detection. The laser’s infrared wavelength is important, because it can easily and specifically detach electrons from oxygen ions.”

This short animation illustrates a new method, developed by physicists at the University of Maryland, to detect concealed radioactive material by using an infrared laser beam to induce an electron avalanche breakdown near the material. Credit: R. Schwartz/H. Milchberg/U. of Maryland (Click image to download hi-res version.)This short animation illustrates a new method, developed by physicists at the University of Maryland, to detect concealed radioactive material by using an infrared laser beam to induce an electron avalanche breakdown near the material. Credit: R. Schwartz/H. Milchberg/U. of Maryland (Click image to download hi-res version.)

Applying an intense, infrared laser field causes the free electrons caught in the beam to oscillate and collide with atoms nearby. When these collisions become energetic enough, they can rip more electrons away from the atoms.

“A simple view of avalanche is that after one collision, you have two electrons. Then, this happens again and you have four. Then the whole thing cascades until you have full ionization, where all atoms in the system have at least one electron removed,” explained Milchberg, who also has an appointment at UMD’s Institute for Research in Electronics and Applied Physics (IREAP).

As the air in the laser’s path begins to ionize, it has a measurable effect on the infrared light reflected, or backscattered, toward a detector. By tracking these changes, Schwartz, Milchberg and their colleagues were able to determine when the air began to ionize and how long it took to reach full ionization.

The timing of the ionization process, or the electron avalanche breakdown, gives the researchers an indication of how many seed electrons were available to begin the avalanche. This estimate, in turn, can indicate how much radioactive material is present in the target.

“Timing of ionization is one of the most sensitive ways to detect initial electron density,” said Daniel Woodbury, a physics graduate student at UMD and a co-author of the research paper. “We’re using a relatively weak probe laser pulse, but it’s ‘chirped,’ meaning that shorter wavelengths pass though the avalanching air first, then longer ones. By measuring the spectral components of the infrared light that passes through versus what is reflected, we can determine when ionization starts and reaches its endpoint.”

The researchers note that their method is highly specific and sensitive to the detection of radioactive material. Without a laser pulse, radioactive material alone will not induce an electron avalanche. Similarly, a laser pulse alone will not induce an avalanche, without the seed electrons created by the radioactive material.

While the method remains a proof-of-concept exercise for now, the researchers envision further engineering developments that they hope will enable practical applications to enhance security at ports of entry across the globe.

“Right now we’re working with a lab-sized laser, but in 10 years or so, engineers may be able to fit a system like this inside a van,” Schwartz said. “Anywhere you can park a truck, you can deploy such a system. This would provide a very powerful tool to monitor activity at ports.”

###

In addition to Milchberg, Schwartz, and Woodbury, UMD-affiliated co-authors of the research paper include Phillip Sprangle, professor of physics and electrical and computer engineering with an appointment at IREAP, and Joshua Isaacs, a physics graduate student.

The research paper, “Remote detection of radioactive material using mid-IR laser-driven avalanche breakdown,” Robert Schwartz, Daniel Woodbury, Joshua Isaacs, Phillip Sprangle and Howard Milchberg, was published in the journal Science Advances on March 22, 2019.

This work was supported by the Defense Threat Reduction Agency (Award No. HDTRA11510002), the Air Force Office of Scientific Research (Award Nos. FA9550-16-10121 and FA9550-16-10259), the Office of Naval Research (Award No. N00014-17-1-2705) and the Department of Energy (Award No. DE-NA0003864). The content of this article does not necessarily reflect the views of these organizations.