How Does Quantum Mechanics Meet Up With Classical Physics?

In physics, there is a deep disparity between the quantum and classical perspective on physical laws. Classical mechanics is used to describe the familiar world around us. This is the physics that you may have been exposed to in high school or early college where you calculate the trajectory of a baseball or speed of a car.  Quantum mechanics on the other hand is primarily used to describe incredibly small objects that are on sub-micron length scales such as electrons or atoms. Quantum mechanics is typically far from intuitive and is home to a variety of mind-bending phenomena like quantum tunneling and entanglement.  The differences between classical mechanics and quantum mechanics are quite striking.Schematic of the Aharonov-Bohm mesoscopic device connected to two electron reservoirs.  The device is biased by a magnetic flux and contains a “dephasing” trapping site. Schematic of the Aharonov-Bohm mesoscopic device connected to two electron reservoirs. The device is biased by a magnetic flux and contains a “dephasing” trapping site.

Everyday processes are governed by equations of motion that include friction, which creates the phenomenon of irreversibility, which we all take for granted.  Irreversibility becomes clear when we take a movie of an egg falling onto a solid surface and cracking open.  When the movie is run backward, we can tell that it is obviously “wrong” because broken eggs don’t spontaneously re-assemble and then jump up to the original location above the surface.  We say that irreversibility creates the perception of the “arrow of time.”  However, in quantum mechanics there is no “arrow of time” because all microscopic processes are fully irreversible – in other words in the microscopic world everything is the same for time running forward or backward.  The natural question to ask is then: how do the laws of quantum mechanics segue into those of classical mechanics as you involve increasing numbers of interacting particles and influences?

Semiclassical physics aims to bridge this disparity by exploring the regime between pure quantum evolution and classical physics. By introducing the corrupting influence of “dephasing”, one can disrupt the symmetric forward/backward time evolution and recover some degree of classical behavior from a quantum system, such as an electron travelling through a metal.  Of particular interest is whether this (typically undesired) “de-phasing” effect creates opportunities for new technologies that can perform tasks that are impossible in either the fully quantum or fully classical limits.

The mechanism of “dephasing”, the way a quantum system is pushed towards being classical, is then of great importance and needs to be understood.  In a recent experiment performed at the University of Maryland, it was found that one current theoretical treatment of “dephasing” effectively renders the model system classical, suggesting that more nuanced notions are required to understand what happens in this interesting semiclassical regime.

Photograph of the Aharonov-Bohm-graph microwave analogue made up of coaxial cables, circulators (small boxes), phase trimmers, and attenuators (large boxes). Photograph of the Aharonov-Bohm-graph microwave analogue made up of coaxial cables, circulators (small boxes), phase trimmers, and attenuators (large boxes). One hypothetical technology proposed to take advantage of this regime is a two-lead mesoscopic (i.e. really small) electrical device which would have a net charge current flowing through it in the absence of a potential difference without the use of a superconductor, in apparent violation of the second law of thermodynamics, also known as the law of no free lunch. The device in question is an Aharonov-Bohm (AB) ring with two electrical leads, shown in Fig. 1, which could be connected to large reservoirs of electrons. By tailoring the quantum properties of the ring one can create a situation in which electron waves that enter the ring at lead 1 only traverse the ring one time before they exit at lead 2, while the electron waves which start at lead 2 must traverse the ring three times before they can exit at lead 1. A localized “dephasing” center can be thought of as a trapping site that grabs a passing electron and holds on to it for a random amount of time before releasing it, having erased any information about where the electron came from or where it was going.  The released electron is then equally likely to exit the device through either lead.  Since the site will act preferentially on the longer lingering electrons, it would cause more electrons to travel from 1 to 2 than from 2 to 1, resulting in a net electrical current through the device with no external work being done!

The team at UMD has performed an experiment to address certain aspects of this provocative proposal. Though the experiment is fully classical, the team successfully established the transmission time imbalance using wave interference properties.  The UMD researchers made use of their recently developed concept of complex time delay to create a microwave circuit that had the necessary ingredients to mimic the asymmetric transmission-time properties of the hypothetical device.  This device is considered to be “classical” because it’s about the size of two human hands, in contrast to the originally proposed semiclassical device which would be the size of a few molecules. The device is a microwave circuit in the shape of a ring made mainly out of coaxial cables (see Fig. 2). The UMD researchers send microwave light pulses through the device to mimic electrons.  This analogue allows them to probe certain aspects of this provocative proposal and test their viability. 

Since they are working with a classical analogue they were limited in their ability to recreate the trapping site.  The researchers crudely attempted to mimic a quantum “dephasing” site by using a microwave attenuator. An attenuator works by reducing the energy (amplitude) of the microwave pulse and basically functions as a source of friction for the pulses.  The circuit was carefully studied and subjected to every kind of input the researchers could throw at it: frequency domain continuous waves, time domain pulses, and even broadband noise.Comparison of the Aharonov-Bohm-graph microwave analogue asymmetric transmission (purple diamonds and lines, P_21-P_12 on left axis) and simulated mesoscopic device transmission probability asymmetry (black circles, P_21-P_12 on right axis), as a function of microwave dissipation (Γ_A/2) in Nepers, and quantum “dephasing rate” (average number of inelastic scattering events per electron passage), on a common log scale. Comparison of the Aharonov-Bohm-graph microwave analogue asymmetric transmission (purple diamonds and lines, P_21-P_12 on left axis) and simulated mesoscopic device transmission probability asymmetry (black circles, P_21-P_12 on right axis), as a function of microwave dissipation (Γ_A/2) in Nepers, and quantum “dephasing rate” (average number of inelastic scattering events per electron passage), on a common log scale.

The experiment does indeed show an imbalance in the transmission probability through the classical analog microwave device.  Further, the UMD scientists find remarkably similar transmission imbalance as a function of the classical rate of imitated “dephasing” as quantum simulations show on the electron “dephasing” rate in a numerical simulation in the literature, see Fig. 3. These results suggest that the utilized treatment of “dephasing” does not adequately capture the quantum nature of the system, as the predicted effects can be seen in a purely classical system.  The team concludes that more sophisticated theoretical notions are required to understand what happens in the transition between pure quantum and classical physics.  Nevertheless, there seems to be unique opportunities to study new physics and technologies in quantum systems that interact with external degrees of freedom.

The experiments were done by graduate students Lei Chen, Isabella Giovannelli, and Nadav Shaibe in the laboratory of Prof. Steven Anlage in the Quantum Materials Center in the Physics Department at the University of Maryland.  Their paper is now published in Physical Review B (https://doi.org/10.1103/PhysRevB.110.045103).

LZ Experiment Sets New Record in Search for Dark Matter

Figuring out the nature of dark matter, the invisible substance that makes up most of the mass in our universe, is one of the greatest puzzles in physics. New results from the world’s most sensitive dark matter detector, LUX-ZEPLIN (LZ), have narrowed down possibilities for one of the leading dark matter candidates: weakly interacting massive particles, or WIMPs. 

LZ, led by the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), hunts for dark matter from a cavern nearly one mile underground at the Sanford Underground Research Facility in South Dakota. The experiment’s new results explore weaker dark matter interactions than ever searched before and further limit what WIMPs could be. UMD faculty Carter Hall and Anwar Bhatti contributed to the new results, along with Maryland graduate students John Armstrong, Eli Mizrachi, Ethan Ritchey, Bramwell Shafer, and Donghee Yeum. LZ’s central detector, the time projection chamber, in a surface lab clean room before delivery underground. Credit: Matthew Kapust/Sanford Underground Research Facility LZ’s central detector, the time projection chamber, in a surface lab clean room before delivery underground. Credit: Matthew Kapust/Sanford Underground Research Facility

“These are new world-leading constraints by a sizable margin on dark matter and WIMPs,” said Chamkaur Ghag, spokesperson for LZ and a professor at University College London (UCL). He noted that the detector and analysis techniques are performing even better than the collaboration expected. “If WIMPs had been within the region we searched, we’d have been able to robustly say something about them. We know we have the sensitivity and tools to see whether they’re there as we search lower energies and accrue the bulk of this experiment’s lifetime.” 

The collaboration found no evidence of WIMPs above a mass of 9 gigaelectronvolts/c2 (GeV/c2). (For comparison, the mass of a proton is slightly less than 1 GeV/c2.) The experiment’s sensitivity to faint interactions helps researchers reject potential WIMP dark matter models that don’t fit the data, leaving significantly fewer places for WIMPs to hide. The new results were presented at two physics conferences on August 26: TeV Particle Astrophysics 2024 in Chicago, Illinois, and LIDINE 2024 in São Paulo, Brazil. A scientific paper will be published in the coming weeks.

The results analyze 280 days’ worth of data: a new set of 220 days (collected between March 2023 and April 2024) combined with 60 earlier days from LZ’s first run. The experiment plans to collect 1,000 days’ worth of data before it ends in 2028.

“If you think of the search for dark matter like looking for buried treasure, we’ve dug almost five times deeper than anyone else has in the past,” said Scott Kravitz, LZ’s deputy physics coordinator and a professor at the University of Texas at Austin. “That’s something you don’t do with a million shovels – you do it by inventing a new tool.”

LZ’s sensitivity comes from the myriad ways the detector can reduce backgrounds, the false signals that can impersonate or hide a dark matter interaction. Deep underground, the detector is shielded from cosmic rays coming from space. To reduce natural radiation from everyday objects, LZ was built from thousands of ultraclean, low-radiation parts. The detector is built like an onion, with each layer either blocking outside radiation or tracking particle interactions to rule out dark matter mimics. And sophisticated new analysis techniques help rule out background interactions, particularly those from the most common culprit: radon.

This result is also the first time that LZ has applied “salting” – a technique that adds fake WIMP signals during data collection. By camouflaging the real data until “unsalting” at the very end, researchers can avoid unconscious bias and keep from overly interpreting or changing their analysis.

“We’re pushing the boundary into a regime where people have not looked for dark matter before,” said Scott Haselschwardt, the LZ physics coordinator and a recent Chamberlain Fellow at Berkeley Lab who is now an assistant professor at the University of Michigan. “There’s a human tendency to want to see patterns in data, so it’s really important when you enter this new regime that no bias wanders in. If you make a discovery, you want to get it right.”

 Members of the LZ collaboration gather at the Sanford Underground Research Facility in June 2023, shortly after the experiment began the recent science run. (Credit: Stephen Kenny/Sanford Underground Research Facility) Members of the LZ collaboration gather at the Sanford Underground Research Facility in June 2023, shortly after the experiment began the recent science run. (Credit: Stephen Kenny/Sanford Underground Research Facility)Dark matter, so named because it does not emit, reflect, or absorb light, is estimated to make up 85% of the mass in the universe but has never been directly detected, though it has left its fingerprints on multiple astronomical observations. We wouldn’t exist without this mysterious yet fundamental piece of the universe; dark matter’s mass contributes to the gravitational attraction that helps galaxies form and stay together.

LZ uses 10 tonnes of liquid xenon to provide a dense, transparent material for dark matter particles to potentially bump into. The hope is for a WIMP to knock into a xenon nucleus, causing it to move, much like a hit from a cue ball in a game of pool. By collecting the light and electrons emitted during interactions, LZ captures potential WIMP signals alongside other data.

“We’ve demonstrated how strong we are as a WIMP search machine, and we’re going to keep running and getting even better – but there’s lots of other things we can do with this detector,” said Amy Cottle, lead on the WIMP search effort and an assistant professor at UCL. “The next stage is using these data to look at other interesting and rare physics processes, like rare decays of xenon atoms, neutrinoless double beta decay, boron-8 neutrinos from the sun, and other beyond-the-Standard-Model physics. And this is in addition to probing some of the most interesting and previously inaccessible dark matter models from the last 20 years.”

LZ is a collaboration of roughly 250 scientists and engineers from 38 institutions in the United States, United Kingdom, Portugal, Switzerland, South Korea, and Australia; much of the work building, operating, and analyzing the record-setting experiment is done by early career researchers. The collaboration is already looking forward to analyzing the next data set and using new analysis tricks to look for even lower-mass dark matter. Scientists are also thinking through potential upgrades to further improve LZ, and planning for a next-generation dark matter detector called XLZD.

“Our ability to search for dark matter is improving at a rate faster than Moore’s Law,” Kravitz said. “If you look at an exponential curve, everything before now is nothing. Just wait until you see what comes next.”

Original story: https://newscenter.lbl.gov/2024/08/26/lz-experiment-sets-new-record-in-search-for-dark-matter/

LZ is supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics and the National Energy Research Scientific Computing Center, a DOE Office of Science user facility. LZ is also supported by the Science & Technology Facilities Council of the United Kingdom; the Portuguese Foundation for Science and Technology; the Swiss National Science Foundation, and the Institute for Basic Science, Korea. Over 38 institutions of higher education and advanced research provided support to LZ. The LZ collaboration acknowledges the assistance of the Sanford Underground Research Facility.

Edward "Joe" Redish, 1942 - 2024

Edward F. “Joe” Redish, a nuclear theorist who became a globally recognized expert in physics education research, died on August 24, 2024 at age 82. 

Upon earning his Ph.D. at MIT in 1968, Redish came to UMD on a fellowship in nuclear theory. He was hired as an assistant professor in 1970, continuing his work on the theory of reactions and the quantum few-body problem.

Over the next dozen years, technological advances made computers vastly more accessible, and Redish recognized their enormous potential for students grappling with difficult concepts and calculations.  Intending to develop useful tools, he accepted the position of department chair in 1982, and quickly launched the Maryland University Project in Physics and Educational Technology (M.U.P.P.E.T.). Among the results was M.U.P.P.E.T. Utilities, a software package with applications for graphing, simple animations and data management that allowed students to use computing for complex physics problems.

M.U.P.P.E.T. inspired broad interest in incorporating computing into physics instruction. The experience also heightened Redish’s interest in physics education. In 1992, he took a sabbatical at the University of Washington with Dr. Lillian McDermott, a leader in the field, and upon his return launched the Maryland Physics Education Research Group.  

Since its creation, the UMD PERG has graduated dozens of physics Ph.Ds. and trained several postdocs. Graduates include many tenured physics faculty, two American Physical Society (APS) fellows, and a president of the American Association of Physics Teachers (AAPT).

Among the group’s notable efforts was the Maryland Physics Expectations Survey (MPEX), which revealed a chasm between what students and professors thought was happening in introductory physics courses. This paper led to the development of similar surveys in physics and in other fields. Redish and the PERG became leaders in the development of a theoretical framework for Physics Education Research and in developing analytic tools for cognitive modeling of student thinking

In 2003, as part of The Physics Suite, a project unifying multiple active-learning materials with a new textbook, Redish wrote a guide to physics teaching, Teaching Physics with the Physics Suite. A December 2019 review in the UK's Institute of Physics’ education newsletter called it "perhaps the single best book available for a teacher to read who wants to get a deeper insight into teaching and learning in physics." It has been translated into Japanese and Farsi.

In response to his research findings, Redish overhauled Physics 121/122 (required for life science students) to focus on the development of higher-order scientific thinking skills, reconsidering each component and better integrating the labs, tutorials and homework assignments. To provide a more interactive experience, he introduced interactive lecture demonstrations and clickers, which provided real-time feedback to the instructor on what students were absorbing.

In 2010, Redish received funding from the Howard Hughes Medical Institute for the National Experiment in Undergraduate Science Education (NEXUS) and created Physics 131/132. This sequence was designed for students planning careers in medicine and bioscience, who will better understand chemical and biological processes with a solid foundation in physics. It is a core element of the multi-university, multi-million dollar National Science Foundation (NSF) project, The Living Physics Portal, a national web resource for organizing, evaluating, and sharing materials for physics classes for life science students.

His more than 100 published papers include three major articles in Physics Today, two of which were cover articles.. He was awarded $7.5 million in federal funding for Physics Education Research.

Redish was a UMD Distinguished Scholar-Teacher and a Fellow of both the American Association for the Advancement of Science and the APS.  He received a broad range of accolades, including the NSF Director's Distinguished Teaching Scholar Award in 2005.

For 12 years, he was the U.S. representative to the International Union of Pure and Applied Physics Commission on Physics Education (C14), and received its Education Medal in 2012. He was awarded the AAPT Oersted and Millikan medals and the University System of Maryland Board of Regents Award for Teaching. In 2015, he received the APS Excellence in Physics Education Award, "For leadership in the use of computers in physics education, applying cognitive research to improve student learning and critical thinking skills, tailoring physics instruction for nonphysicists, and guiding the field of physics education research through a period of significant growth."

He was a leader in helping building the Physics Education Research community, editing the first PER journal and organizing major conferences including the first on Computers in Physics Education (1988), a major international meeting on Physics Education (1996), and the first (and so far only) Fermi International Summer School on PER (2003).

Redish’s wife Ginny, daughter Deborah and son David all hold doctorates in science. In 2011, Joe and Ginny established the E.F. Redish Endowed Professorship in Science Education.  In 2019, they created the E.F. and J.C. Redish Maryland Promise Scholarship

In 2017, more than 150 colleagues and advisees gathered to honor Redish on his 75th birthday.   

More information is available here: https://www.sagelbloomfield.com/obituary/Edward-Redish#obituary

 

UMD Offers New Minor in Quantum Science and Engineering

 The University of Maryland will offer a new minor in quantum science and engineering beginning in spring 2025. Students in the minor will learn about quantum computing technologies, algorithms for quantum computers, characteristics of quantum materials, and sensing and noise in quantum systems.

“Our new quantum minor complements our well-recognized strength in quantum research and helps prepare our undergraduate students to join the workforce in this emerging field or attend graduate school and contribute to future quantum research,” said Sennur Ulukus, chair of UMD’s Department of Electrical and Computer Engineering (ECE).

Undergraduate students in the A. James Clark School of Engineering and College of Computer, Mathematical, and Natural Sciences (CMNS) will be eligible to enroll in the minor. Applications will be accepted online from October 28, 2024 to December 6, 2024. The minor was created through a multidisciplinary collaboration between the departments of ECE, physics, computer science, materials science and engineering, and mechanical engineering

“With this new program, we are significantly enhancing the set of courses on quantum topics for UMD undergraduates. The minor will let students approach quantum science and engineering from different angles and explore the subject deeply,” said Andrew Childs, a professor in the Department of Computer Science and the University of Maryland Institute for Advanced Computer Studies

The new minor adds to UMD’s quantum education offerings, which include a quantum information specialization for computer science majors and quantum computing master’s and graduate certificate programs.

“Quantum information science is inherently multidisciplinary, going beyond just physics,” said Steve Rolston, chair and professor of the Department of Physics. “This minor will allow students throughout CMNS to learn about quantum.”

In addition to academics, UMD is a hub for quantum research and development. Over 200 quantum scientists and engineers at the university are exploiting the unique properties of quantum physics to usher in a new age of technology: quantum computers capable of currently intractable calculations, ultra-secure quantum networking and exotic new quantum materials.

The quantum enterprise at UMD includes the following:


The Q-Lab will also provide equipment for two lab courses offered in the new minor, one focused on quantum hardware and the other focused on quantum software. The courses will give students a physical appreciation for what quantum can do on top of the math and science theory they will learn in their lecture courses.

“We’re not just teaching students about quantum mechanics. We’re preparing them to think in ways that bridge the classical and quantum-computing worlds,” said ECE Professor Patrick O’Shea, director of quantum education programming. “We educate our students to be creative quantum explorers, not just quantum-tourists.”

Adapted from text provided by the Department of Electrical and Computer Engineering.