Kane to Give Prange Prize Lecture on Oct. 26

Charles L. Kane of the University of Pennsylvania has been named the recipient of the Richard E. Prange Prize and Lectureship in Condensed Matter Theory and Related Areas. Kane will give his lecture, "The Emergence of Topological Quantum Matter," on Tues., Oct. 26 at 4 p.m. in room 1412 of the John S. Toll Physics Building. Refreshments will be served at 3:30 p.m. Charles Kane (image credit: UPenn)Charles Kane (image credit: UPenn)

Kane will also give a seminar entitled “Quantized Nonlinear Response in Ballistic Metals” on Monday, October 25 at 11 a.m. That talk will be simulcast world-wide on the Joint Quantum Institute YouTube channel, https://www.youtube.com/user/JQInews, which supports audience participation in the chat interface.

The Prange Prize, established by the UMD Department of Physics and Condensed Matter Theory Center (CMTC), honors the late Professor Richard E. Prange, whose distinguished professorial career at Maryland spanned four decades (1961-2000). The Prange Prize is made possible by a gift from Dr. Prange's wife, Dr. Madeleine Joullié, a professor of chemistry at the University of Pennsylvania.

Kane's groundbreaking work on topological insulators—materials with a special kind of electrical conduction on their surface—has initiated a new field in condensed matter physics and garnered external recognition at the highest levels. He has received numerous awards, including the Breakthrough Prize in Fundamental Physics, the Benjamin Franklin Medal of the Franklin Institute, the Dirac Prize of the International Center for Theoretical Physics, the Oliver Buckley Prize of the American Physical Society and the Physics Frontiers Prize of the Fundamental Physics Prize Foundation. He is a member of the National Academy of Sciences.

Richard E. PrangeRichard E. PrangeAt the University of Chicago, Richard Prange received his Ph.D. under Nobelist Yoichiro Nambu and also worked with Murray Gell-Mann and Marvin Goldberger. At the University of Maryland, he edited a highly-respected book on the quantum Hall effect and made important theoretical contributions to the subject. His interests extended into all aspects of theoretical physics, and continued after his retirement. Dr. Prange was a member of the Maryland condensed matter theory group for more than 40 years and was an affiliate of CMTC since its inception in 2002.

"Richard enjoyed a fascinating and fulfilling career at the University of Maryland exploring condensed matter physics, and even after retirement was active in the department," said Dr. Joullié. "He spent the very last afternoon of his life in the lecture hall for a colloquium on graphene, followed by a vigorous discussion. And so I was happy to institute the Prange Prize, to generate its own robust discussions in condensed matter theory."

"The Prange Prize provides a unique opportunity to acknowledge transformative work in condensed matter theory, a field that has proven to be an inexhaustible source of insights and discoveries in both fundamental and applied physics,” said Dr. Sankar Das Sarma, who holds the Richard E. Prange Chair in Physics at UMD and is also a Distinguished University Professor and director of the CMTC.

Since its initiation in 2009, the Prange Prize has been awarded to Philip W. Anderson, Walter Kohn, Daniel Tsui, Andre Geim, David Gross, Klaus von Klitzing, Frank Wilczek and Juan Maldacena.

 

UMD Physicists Elected APS Fellows

Kaustubh Agashe, Mohammad Hafezi and Arpita Upadhyaya have been elected Fellows of the American Physical Society.

Agashe, who was cited for pioneering breakthroughs in holographic composite Higgs theory and phenomenology, and for inspiring numerous related experimentKaustubh AgasheKaustubh Agasheal searches at the Large Hadron Collider, is a member of the Maryland Center for Fundamental Physics. He received his Ph.D. at the University of California, Berkeley in 1998. After postdoctoral appointments at the University of Oregon, Johns Hopkins University and the Institute for Advanced Study, he joined the physics faculty at Syracuse University in 2005. He moved to UMD Physics in 2007. In 2017, he was named a Fermilab Distinguished Scholar.  

Hafezi was cited for pioneering theoretical and experimental work in topological photonics and quantum synthetic matter. Hafezi is a Minta Martin Professor in the Department of Electrical and Computer Engineering, a fellow of the Joint Quantum Institute and a member of the Institute for Research in Electronics & Applied Physics and the Quantum Technology Center. Hafezi's research aims to theoretically and experimentally investigate various quantum Mohammad Hafezi Mohammad Hafezi properties of light-matter interaction for applications in future optoelectronic devices, quantum information processing, and sensing. He earned his Ph.D. in 2009 from Harvard University, and then accepted a position in the JQI. He received a Sloan Research Fellowship and Office of Naval Research Young Investigator award in 2015, and in 2020 was named a Simons Investigator. 

Upadhyaya was selected for contributions to understanding mechanisms of biological force generation and how these forces enable immune cells to respond to the physical properties of their environment, bearing insights into the complex and biomedically crucial mechanisms of T cell and B cell activation.  Upadhyaya is a biophysicist studying how physical properties of living cells are regulated to guide mechanical behaviors such as cell shapeArpita UpadhyayaArpita Upadhyaya changes and force generation and how these guide physical regulation of cell function. She has received a Pappalardo Fellowship in Physics at the Massachusetts Institute of Technology, an Alfred P. Sloan Research Fellowship, and the UMD Physics Richard A. Ferrell Distinguished Faculty Fellowship. She earned her Ph.D. at the University of Notre Dame, and in addition to her work at MIT, was a researcher at UNC Chapel Hill before joining UMD Physics and the Institute for Physical Science and Technology (IPST) in 2006. She serves as co-director of the IPST Biophysics Program.

Also elected APS Fellows were Marc Swisdak of IREAP and YuHuang Wang of the Department of Chemistry. 

 

IonQ Joins the New York Stock Exchange

IonQ debuts on the NYSE, 10/1/21.IonQ debuts on the NYSE, 10/1/21.

On October 1, 2021, IonQ, a company founded on research based at the University of Maryland Department of Physics, joined the New York Stock Exchange. College Park Professor Chris Monroe is IonQ’s Co-Founder and Chief Scientist, and many Terp alumni hold positions in the company.

“It is exciting to see the fruits of the efforts at UMD Physics and the JQI lead to this significant step toward a quantum future,” said physics chair Steve Rolston. “Much of the underlying science and technology were developed here, and many of IonQ’s technical staff are former UMD graduate students and postdocs.”

Monroe joined UMD Physics in 2007, and he and his students, postdocs and colleagues registered a terrific run of achievements. They created the first quantum logic gate and demonstrated the first entanglement of multiple qubits. Monroe’s group also produced the first quantum entanglement between two widely separated atoms, and made headlines worldwide by reporting the first teleportation of quantum information between individual atoms a meter apart.

Not long after, Monroe’s Trapped Ion Quantum Information lab took the lead role in devising a comprehensive plan for a complete, modular, scalable, fault-tolerant quantum-computer architecture in which information would be stored in assemblies of elementary logic units consisting of registers of trapped, entangled ion qubits.    

These and other developments led to the creation of IonQ in 2015. The company headquarters is just off campus, near the College Park Metro Station.

UMD President Darryl Pines traveled to New York for the NYSE premiere. Pines touted the development in an op-ed for the Baltimore Sun: Quantum physics will revolutionize the DMV region.

For more on the NYSE opening: https://ionq.com/news/october-01-2021-ionq-listed-on-nyse

Hakeem Oluseyi, October 26, 2023

 

 

 

               This talk is free and open to all; please register here

                The John S. Toll Physics Building is here
                and directions are here. 

                Read a Physics World profile of Prof. Oluseyi here.