From Lab Bench to Launch Pad

When University of Maryland physics major Dhruv Agarwal first learned about phase change materials—substances that maintain stable temperatures in extreme conditions—in his freshman year, he never imagined the concept would eventually take him to the stars. Now a junior, Agarwal uses his expertise in the subject to lead a team of 20 undergraduates building technology that NASA might one day launch into orbit.

Dhruv Agarwal  Dhruv Agarwal As a project lead for UMD’s Satellite Component Fabrication (SatFab) team, Agarwal oversees one of the most ambitious undergraduate student-led projects on campus: constructing a complete CubeSat from scratch. About the size of a small loaf of bread, SatFab’s mini satellite will house cutting-edge thermal management technology that could revolutionize how spacecraft handle the extreme temperatures of space. 

“CubeSats are small satellites used to carry out Earth observation tasks, perform technology demonstrations or carry experimental payloads,” Agarwal explained. “Our team’s CubeSat is a 3U—meaning a 10-by-10-by-30-centimeter satellite—that will perform the latter two tasks. It’ll have a completely in-house GPS and a novel phase change material-based thermal control system that we designed. We’re hoping to launch our CubeSat through NASA’s CubeSat Initiative, which will send CubeSats to the International Space Station before releasing them into lower Earth orbit.”

Building tomorrow’s satellites today

Agarwal’s journey to satellite engineering wasn’t a straightforward one. Space technology wasn’t even on his radar until he was able to work on a phase change material experiment in 2023 with Aerospace Engineering Senior Lecturer Eric Silk, a faculty advisor for UMD’s Students for the Exploration and Development of Space (SEDS) campus organization. For Agarwal, the opportunity—and a SEDS recruitment email—instantly kick-started his multiyear adventure with space tech.Phase change material experiment.Phase change material experiment.

“I never had an interest in engineering or space, but I am interested in figuring out how things work, which is why I decided to pursue physics,” Agarwal said. “My experience of working with Dr. Silk and my team on the SatFab project ignited my passion for space tech. In turn, I had the chance to apply my knowledge of physics principles in a meaningful way.” 

Working from the ground up, the SatFab team are designing and building every component of the CubeSat, including its exterior shell, communication system, custom-made GPS and novel thermal energy storage system. Agarwal led the team’s efforts in developing the thermal control system, which was designed to be simpler, less expensive and less energy-intensive than existing cooling mechanisms currently used in satellites. 

“Phase change materials are substances that store and release large amounts of energy when they transition between different states, like ice melting into water,” Agarwal explained. “We developed a system that uses this principle to regulate satellite electronics temperatures.”

Agarwal noted that as phase change material on the CubeSat absorbs heat (like when the satellite is in sun-view) and transitions from solid to liquid, it maintains a steady temperature even as it stores excess energy. When temperatures drop (such as when the satellite is in Earth’s shadow), the material solidifies and releases the stored heat back to the satellite’s electronics. This special design allows electronics to be kept in their operating temperature range while minimizing fluctuation, thereby ensuring the satellite’s optimal performance and extending its longevity. 

Developing a working prototype wasn’t easy, Agarwal admitted. With guidance from Silk, the SatFab group also had an overwhelming amount of freedom to architect their experiments despite initially not having the expertise or experience to do so. They learned on the job, designing and redesigning experiments and vigorously testing each component. 

“By developing our systems in-house and making them open source, we hope that we’re laying the ground for future student projects,” he said. “It’s an ongoing project that everyone contributes to.”

Reaching new heights

The SatFab team is already working with partners like aerospace firm Amphenol CIT to ensure that the satellite meets professional reliability standards. Agarwal anticipates that the CubeSat’s components will soon be able to be tested via balloon payloads to simulate flight conditions. 

This semester, Agarwal plans to draft his team’s NASA CubeSat proposal, write the final research manuscript for CubeSat’s thermal control system project, and prepare to present it at the 2026 American Institute of Aeronautics and Astronautics’ SciTech Forum in January. He expects for the team’s CubeSat to launch in late 2027 or early 2028.

“Our work was recently accepted for presentation at SciTech, so I’m excited to enter the next phase of the project. We’ve made a lot of progress, but there’s still a lot more to be done,” Agarwal said. “We need more students with a passion for problem-solving on our team than ever, especially those with physics and engineering backgrounds.”  

As a physics major, Agarwal never thought he’d lead a team of engineers or perform administrative tasks like budget or resource management but now sees the experience as invaluable and applicable to any lab or office. He hopes that other physics majors will look to explore less traditional paths as he did—and discover a new way to grow and achieve success.  

“I’m incredibly thrilled at the prospect of our experiment possibly being launched into space, especially because we’re all undergraduate students,” he added. “The fact that my team’s work can culminate in something so fantastic and actually create a lasting contribution to space engineering is something I’ll always remember.”

Written by Georgia Jiang

Physicist Brings High Energy to UMD With Laser-Made Plasmas

Will Fox credits his early research experiences with introducing him to the power of plasma, a state of matter that could overhaul the energy sector and demystify astrophysical phenomena like cosmic rays and solar flares.

As an undergraduate researcher at Princeton University, Fox joined the Princeton Plasma Physics Laboratory (PPPL), a U.S. Department of Energy lab where he would later work for 11 years, including most recently as a principal research physicist. There, Fox played an integral role in developing experiments that used lasers to produce extremely hot and dense plasmas in the lab—no space telescope needed.Will Fox. Credit: Sarah Jane WhiteWill Fox. Credit: Sarah Jane White

Fox was captivated by the many applications of this research, including the potential to unlock fusion as an alternative energy source and advance the scientific community’s understanding of plasma physics at a fundamental level. 

“Research on laser-produced plasmas has been going on since the ’60s, and what’s exciting about these experiments is that they’ve come up with clever ways to measure what’s happening in the plasma produced,” Fox said. “In doing these experiments, you get to leverage all those developments that have happened over the years.”

In January 2025, Fox joined the University of Maryland as an assistant professor of physics. He’s refurbishing a lab in the Energy Research Facility, which will include a high-powered laser that allows him to produce plasmas on campus without needing to travel to other institutions. The lab will also feature a vacuum chamber and a control room, allowing researchers and collaborators from other institutions to work in a separate area from the laser.

“The physics department has an excellent group of faculty and a lot of expertise to help you set up a lab,” Fox, who holds a joint appointment in UMD’s Institute for Research in Electronics and Applied Physics, said of what attracted him to UMD. 

Magnetically drawn

Despite being the most common state of matter in the universe, plasma is perhaps the least understood. Its free-flowing, negatively charged electrons and positively charged ions make it an efficient conductor of electricity. Its presence on Earth can be seen in lightning strikes, and in space, it contributes to processes such as magnetic reconnection (as seen in solar flares) and collisionless shocks (whose waves propel cosmic rays to nearly the speed of light).

Fox has devoted his career to studying these complex processes and sharing what he’s learned with students. After graduating from Princeton with a bachelor’s degree in physics in 2001, he took a gap year to seize a once-in-a-lifetime opportunity: a math and physics teaching position at a high school in Nepal’s capital through the Princeton in Asia fellowship program. During his year in Kathmandu, Fox spent weekdays in the classroom and weekends in the Himalayas.

“I got into mountain biking and went on hikes,” Fox recalled fondly. “Just being immersed in the culture was exciting, and there was always something new or interesting going on in the city.”

When his fellowship ended, Fox enrolled in MIT’s physics Ph.D. program and focused on magnetic reconnection, a process that occurs in plasma and converts magnetic energy into kinetic energy. This concept is crucial for understanding Earth’s magnetized bubble of plasma, known as a magnetosphere; the aurora phenomena seen near Earth’s poles; and processes related to the sun, including coronal mass ejections and solar flares. 

Magnetic reconnection can also cause problems when it occurs spontaneously in fusion devices used to generate energy. To better understand the phenomenon, Fox contributed to experiments that enabled magnetic reconnection to unfold in a controlled setting.

“Reconnection is one way the plasma can break out of the magnetic field that's trying to hold it in place,” Fox explained. “The idea is that by understanding how reconnection works, you can maybe design a better fusion device or understand what you have to do to keep things contained and in control.”

Finding purpose in plasma

After earning his Ph.D. in 2009, Fox spent two years as a research scientist at the University of New Hampshire’s Space Science Center, where he helped develop a program called the Plasma Simulation Code to see how plasma particles would interact with magnetic and electric fields in a virtual environment. Later, at PPPL, he used this same code to study how laser-produced plasmas might replicate astrophysical phenomena

While Fox enjoyed this modeling work and found that it helps researchers design better experiments, he prefers producing actual plasmas in the lab.

“I still think of myself, ultimately, as an experimental physicist,” Fox said. “At the end of the day, I get excited about seeing a result and real data in a physical experiment.”

After Fox joined the PPPL as a physicist in 2013, he developed experiments with laser-produced plasmas that surpassed temperatures of 30 million degrees Fahrenheit. He also led the first experimental observations of the ion Weibel instability, a process that can spontaneously generate a magnetic field in plasma. Understanding this process can help researchers tackle one of the biggest unanswered questions in his field: how plasmas across the universe generate magnetic fields.

“When we look out at the cosmos, almost all of the plasma that's out there has a magnetic field,” Fox said. “You can look at the polarization of light that’s coming from a galaxy and see that there must be some large magnetic field embedded in the plasma. So overall, it's a question of, ‘Where did this magnetic field come from in the first place?’”

In later studies, Fox used plasma and a static magnetic field to generate collisionless shocks, which are comparable in some ways to the shockwaves that ripple off airplanes flying faster than the speed of sound. He also developed an improved method of measuring magnetic fields in plasma, resulting in a higher degree of accuracy.

In recognition of these discoveries, Fox received two awards from the American Physical Society: a 2019 Thomas H. Stix Award for Outstanding Early Career Contributions to Plasma Physics and a 2020 John Dawson Award for Excellence in Plasma Physics Research. 

Fox has published more than 80 research papers throughout his career and is gearing up for many more at UMD. Currently, he is using laser-produced plasmas to take a closer look at magnetic reconnection. 

“We are colliding two plasmas with magnetic fields together and then using these techniques to measure how the plasma is behaving, where they're interacting and where the reconnection is happening,” Fox said.

Going forward, Fox plans to collaborate on experiments with Distinguished University Professor of Physics Howard Milchberg, whose lab is also located in the Energy Research Facility and is equipped with a short pulse laser. 

“Our vision is that we'll have these cooperative experiments where the laser in my lab will produce the plasma state, and then we can take different types of probe measurements using the short pulse laser,” Fox said. “I’m looking forward to running more experiments and collaborating with the faculty and students here.”


Written by Emily Nunez

Solving a Decades-long Solar Flare Mystery

For almost half a century, scientists have been scratching their heads over one of the strangest and most inexplicable phenomena to occur on the sun. During certain explosive events like solar flares, helium-3 (an extremely rare isotope normally found in tiny quantities) suddenly becomes dramatically more abundant than usual as it gets blasted toward Earth. Sometimes, it even outnumbers helium-4, the most common variant of the element—a complete reversal of expectations. 

Now, Anna Fitzmaurice, a physics Ph.D. student at the University of Maryland, may have brought scientists a step closer to solving this cosmic puzzle. Working with Distinguished University Professor of Physics James Drake, Fitzmaurice narrowed down potential culprits for the abnormally high amount of helium-3 during solar flares by focusing on a fundamental process called magnetic reconnection. Anna FitzmauriceAnna Fitzmaurice

“Magnetic reconnection is a driving force behind solar flares and their interactions with Earth's magnetic field, such as what we see as the northern and southern lights,” Fitzmaurice explained. “Although the sun’s magnetic reconnection and the helium being released toward Earth usually isn’t harmful to us, it influences space weather and potentially impacts our satellites, power grids and even astronauts we send up to space. Studying this phenomenon can help us predict and maybe even prepare for when things get rough.”

A new approach to an old problem

Previous scientific theories focused on high-energy electrons (negatively charged particles) somehow creating the right conditions to accelerate helium-3. But based on previous magnetic reconnection research,  Drake’s group thought that the real drivers might be just the opposite:  they believed that protons (positively charged particles) were more likely to be able to transfer energy into helium-3, superheating the rare isotope and pushing it past helium-4 toward Earth. 

To test this theory, Fitzmaurice developed a detailed simulation of solar environments by modeling a uniform magnetic field containing cold background protons and hot, energetic particles streaming through them like jets.

“Imagine if you had a pond full of water. If you shoot a hose through this pond, you’d get all these ripples and waves in the water,” Fitzmaurice explained. “Something similar happens when you shoot high-energy protons through a background of still, non-moving protons.” 3He acceleration. Credit: Anna Fitzmaurice.3He acceleration. Credit: Anna Fitzmaurice.

Fitzmaurice found that magnetic reconnection on the sun created beams of fast-moving particles, and these particles generated two types of plasma waves that heated helium-3 to extremely high temperatures—nearly 20 times hotter than its original temperature. The  temperatures were so intense that superheated helium-3 could move into regions of the sun where particles get accelerated and eventually shot toward Earth. However, helium-4 experienced less heating, so it stayed behind this speed threshold and was unable to reach the acceleration zones. Fitzmaurice’s research resulted in two recent papers, one published in The Astrophysical Journal and the other in the journal Physics of Plasmas. 

“My  simulations indicate that helium-3 enhancement events are probably much more common than we previously thought,” Fitzmaurice said. “This suggests that there’s some underlying physical process that’s a fundamental feature of solar flare physics rather than a rare anomaly. Learning more about these fundamental processes can help us better understand how the universe works. We can apply this to many different contexts, including learning about environments around black holes and neutron stars, or how the sun’s activity influences life on Earth and humans.”

From family stargazer to solar flare detective

Fitzmaurice feels like she’s come a long way in her journey as an astrophysicist. Growing up in a family where “no one was very science-minded,” she often reflects on how her serendipitous path to astrophysics began—with her father, who often took her to watch rocket launches from NASA’s Wallops Visitor Center in Virginia when she was growing up. 

“I feel pretty lucky to have someone who really fed my curiosity about space as a kid,” Fitzmaurice explained. “We would go as a family to watch meteor showers and rocket launches. He pointed out stars and planets in the night sky. It was because of those experiences that I ‘accidentally’ ended up studying the sun during my undergrad at Catholic University, even though it really wasn’t my original plan in college.”  

Looking back, Fitzmaurice believes she couldn’t have picked a better time to study the sun and its fiery storms. She initially began her research around the 2017 total solar eclipse, which captured the attention of millions of Americans, and has observed many unique solar events since. Now in her final year of her Ph.D. program, Fitzmaurice hopes to connect her theoretical breakthrough about helium-3 to real satellite measurements and essentially prove that her computer models match what actually happens deep in space. She hopes her work will help scientists understand the fundamental physics behind solar flares and bring researchers closer to predicting when and how violently the sun might act up.

“It’s honestly been a very exciting time for me and other solar scientists,” Fitzmaurice said. “We’re now nearing the end of the solar maximum, the peak of the sun’s 11-year activity cycle and when there are more frequent and violent solar flares. With satellites like the Parker Solar Probe and Solar Orbiter, we’re getting closer to the sun than ever before and learning things we would never have expected.” 

Summer at Summit Station

For most graduate students, research trips primarily mean conferences. For Aishwarya Vijai, it meant a month at Summit Station, Greenland, deep inside the Arctic Circle. Summit Station is located near the apex of the Greenland ice sheet at an elevation of ~10,000 feet above sea level. The station hosts scientists from collaborations around the world to conduct experiments on and with the Greenland ice sheet. One such collaboration is the Radio Neutrino Observatory in Greenland (RNO-G), a next-generation, ultra-high energy (UHE) neutrino detector. RNO-G sends teams of 4-5 people to help build the detector, and this year, these teams included a student from UMD: Aishwarya, a fourth-year graduate student in the physics department. Aishwarya works with Assistant Professor Brian Clark. The team flew to Summit Station via miltary aircrafts called LC-130s from Kangerlussuaq, a small town in Western Greenland. They stayed at Summit Station for a month to do maintenance work and collect data for calibration purposes. 

From Summit Station, the RNO-G detector, which is spread out over multiple locations (“stations”) on the ice sheet, is accessed via snow machines. Primary work done by this year included raising structures like solar panels and wind turbines which are used to power the detector. This involved a lot of shoveling to remove the drifting snow and attaching extensions to the bases of these structures to raise their heights. In addition, the team collected critical data to better understand the detector’s performance. This was achieved by campaigns where antennas were lowered hundreds of feet into the ice sheet. 

Summit Station has a maximum capacity of 40 people and operates 6 days a week with Sundays off. The biggest building on station is the aptly named Big House, a common area for meals, bathrooms, showers and entertainment in the form of books and board games. Food is prepared on station by a chef 6 days a week with leftovers on Sundays. Additional amenities include a gym, a recreational tent with a projector for watching movies, and a sauna. Sleeping accommodations are in the form of fish huts (small hard-sided structures for 1 person), the Flarm and the Caboose (hard-sided structures for 6-8 people). 

Temperatures at Summit Station typically fluctuate around -10 degrees Fahrenheit with wind chill, with occasional storms generating wind gusts of up to 50 mph. All people on Summit Station are equipped with winter gear to handle extreme weather. The station is located within the Arctic Circle so the sun doesn’t set in the summer until the beginning of August. The constant sunlight reflecting off the ice sheet leads to a high albedo. Sunglasses are worn outside at almost all times. 

Summit Station and the surrounding ice sheet was an incredible place to visit. The ice sheet is extremely beautiful and vast, appearing almost infinite in size. There are also several cool phenomena that can be observed on the ice sheet, like sun dogs and halos, which are produced when sunlight refracts through the ice crystals in the atmosphere. Sunsets at Summit Station saturate the sky in shades of red and yellow that appear even brighter in contrast to the white surroundings. The community at Summit Station also made the experience incredible, turning a nearly inhospitable place into the place to be for an experience of a lifetime. 

The Greenland ice sheet is one of the only places in the world where a UHE neutrino observatory like RNO-G can be built. The collaboration as a whole looks forward to returning next year and continuing work building the detector and hopefully using it to elevate our understanding of the universe at the highest of energies. 

More About RNO-G

The Radio Neutrino Observatory in Greenland (RNO-G) is a UHE neutrino telescope located at Summit Station, Greenland. The detector aims to find UHE neutrinos potentially emitted from energetic phenomena in the universe like black hole mergers and supernovas (explosions of stars). The detector is currently under construction and the University of Maryland (UMD) is a major construction site. Currently, the RNO-G group at UMD has built nearly 250 antennas. These antennas are the primary detection unit of RNO-G and aim to find the broadband radio pulse that is produced when UHE neutrinos interact with ice.

The fully completed detector will have 35 stations spaced 1 km apart to create an array. Each station will be equipped with 24 antennas buried in the Greenland Ice Sheet in drilled holes ~100 meters in depth. 8 stations have been built so far.

 

Jacob "Bob" Dorfman, 1937-2025

Professor Emeritus Jacob Robert Dorfman died on August 27, 2025. A native of Pittsburgh, Dorfman grew up in Baltimore and received his bachelor’s degree and doctorate at Johns Hopkins University. After three years of post-doctoral research at the Rockefeller University, he was appointed a UMD assistant professor in physics. During his time in College Park, he served as the Director of the Institute for Physical Science and Technology, Dean of the College of Computer, Mathematical and Physical Sciences, and Vice President for Academic Affairs and Provost, returning to teaching and research in 1992. He retired as an emeritus professor in 2005.

"The entire University of Maryland community extends its deepest condolences to Dr. Dorfman's family, friends and colleagues,” said UMD President Darryll J. Pines. "Dr. Dorfman's contributions to the university were substantial and wide-ranging, from serving as a dean and as provost to chairing a committee focused on improving student academic outcomes. He played a critical role in laying the foundation for our institution to achieve excellence, and we are grateful for all he did to advance the university.”

Dorfman enjoyed visiting professor appointments at the University of Utrecht, Rockefeller University and The Technion in Haifa, Israel.  He is the author of over one hundred scientific papers and books on statistical thermodynamic and chaos theory. His most recent book, Contemporary Kinetic Theory of Matter, written with Henk van Beijeren and T. R. Kirkpatrick, was published in 2021.

In addition to his scientific work, Dorfman studied art history, specializing in 17th century Dutch art, and continued to serve on thesis committees in recent years.

A memorial service is planned for Sunday, Aug. 31 at 10 a.m. at Temple Micah, 2829 Wisconsin Ave. NW