UMD Offers New Minor in Quantum Science and Engineering

 The University of Maryland will offer a new minor in quantum science and engineering beginning in spring 2025. Students in the minor will learn about quantum computing technologies, algorithms for quantum computers, characteristics of quantum materials, and sensing and noise in quantum systems.

“Our new quantum minor complements our well-recognized strength in quantum research and helps prepare our undergraduate students to join the workforce in this emerging field or attend graduate school and contribute to future quantum research,” said Sennur Ulukus, chair of UMD’s Department of Electrical and Computer Engineering (ECE).

Undergraduate students in the A. James Clark School of Engineering and College of Computer, Mathematical, and Natural Sciences (CMNS) will be eligible to enroll in the minor. Applications will be accepted online from October 28, 2024 to December 6, 2024. The minor was created through a multidisciplinary collaboration between the departments of ECE, physics, computer science, materials science and engineering, and mechanical engineering

“With this new program, we are significantly enhancing the set of courses on quantum topics for UMD undergraduates. The minor will let students approach quantum science and engineering from different angles and explore the subject deeply,” said Andrew Childs, a professor in the Department of Computer Science and the University of Maryland Institute for Advanced Computer Studies

The new minor adds to UMD’s quantum education offerings, which include a quantum information specialization for computer science majors and quantum computing master’s and graduate certificate programs.

“Quantum information science is inherently multidisciplinary, going beyond just physics,” said Steve Rolston, chair and professor of the Department of Physics. “This minor will allow students throughout CMNS to learn about quantum.”

In addition to academics, UMD is a hub for quantum research and development. Over 200 quantum scientists and engineers at the university are exploiting the unique properties of quantum physics to usher in a new age of technology: quantum computers capable of currently intractable calculations, ultra-secure quantum networking and exotic new quantum materials.

The quantum enterprise at UMD includes the following:


The Q-Lab will also provide equipment for two lab courses offered in the new minor, one focused on quantum hardware and the other focused on quantum software. The courses will give students a physical appreciation for what quantum can do on top of the math and science theory they will learn in their lecture courses.

“We’re not just teaching students about quantum mechanics. We’re preparing them to think in ways that bridge the classical and quantum-computing worlds,” said ECE Professor Patrick O’Shea, director of quantum education programming. “We educate our students to be creative quantum explorers, not just quantum-tourists.”

Adapted from text provided by the Department of Electrical and Computer Engineering.

Sturge, Shearin and Moroch Attend 73rd Lindau Nobel Laureate Meeting

Three UMD physics alumni were selected to join the 73rd Lindau Nobel Laureate Meeting, a once-in-a-lifetime opportunity to engage in powerful discussions with dozens of Nobel Prize winners.  

In Lindau, Germany, attendees interacted with prominent scientists like Anne L’Huillier and Ferenc Krausz, among other Nobel Laureates, for a week-long discussion on the impact of physics in the future of energy supply, artificial intelligence and quantum research. 

"My takeaway from the Lindau Meeting is that there are so many things you can do with a physics education and unlimited ways to impact the world with your research," said physics graduate student Kate Sturge (B.S. '22, astronomy; B.S. '22, physics). "It was wonderful to meet so many young scientists from all over the world and bond for a week over our shared love of physics. This week also brought about much personal reflection on what I want to do in my career and what my next steps should be."

Original story: https://cmns.umd.edu/news-events/news/science-terps-attend-73rd-lindau-meeting

Read more about these Science Terps below.

Scott Moroch

Scott Moroch (B.S. '20, physics)

Current position: Ph.D. student, Massachusetts Institute of Technology

Advisor: Tim Koeth (undergraduate research), Ronald Garcia Ruiz (doctoral)

Research focus: Moroch studies precision spectroscopy and ion-trapping of molecules for fundamental physics.

 

Ariana Shearin

Ariana Shearin (B.S. '22, physics)

Current position: Graduate student, Department of Physics

Advisor: Tim Koeth

Research focus: Shearin is working on developing a penning ion trap to study weak force physics.

 

Kathryn Sturge

Kathryn Sturge (B.S. '22, astronomy; B.S. '22, physics)

Current position: Graduate student, Department of Physics 

Advisor: Tim Koeth

Research focus: Sturge studies dielectric breakdown in space-charged polymers.

Milchberg Named Distinguished University Professor

Howard Milchberg has been named a UMD Distinguished University Professor. This is the highest academic honor given to UMD faculty members.

Milchberg studies plasma and high energy density physics, advanced laser-driven particle accelerators and light sources, atomic physics, nonlinear optics, and structured light. He received his B.Eng in Engineering Physics from McMaster University in Hamilton, Ontario, and a Ph.D. in Astrophysical Sciences from Princeton University. After completing postdoc research at AT&T Bell Laboratories, Milchberg joined the University of Maryland in 1988. He has received the UMD Distinguished Scholar-Teacher Award, the A. James Clark School of Engineering Senior Faculty Outstanding Research Award and an NSF Presidential Young Investigator Award. Three of his students have won the American Physical Society (APS) Division of Plasma Physics Dissertation Award.

Milchberg is a Fellow of Optica and of the APS. He is the recipient of two major APS honors: the John Dawson Award for Excellence in Plasma Physics Research and the Arthur L. Schawlow Prize in Laser Science.

Howard MilchbergHoward Milchberg

Milchberg will discuss his work on Tuesday, Sept. 17 at 3 p.m. in room 1410 of the Toll Physics Building when he delivers the John S. Toll Endowed Lecture.  Among recent achievements from his Laboratory for Intense Laser-Matter Interactions:

 Along with his wife Rena and three children, Milchberg established the Irving and Renee Milchberg Endowed Lecture in honor of his late parents, both Holocaust survivors.  

 

Eno Chosen as Leader of US Future Higgs Factory Effort

In June, 2024, a “Future Circular Collider” (FCC) workshop was held in San Francisco. Gina Rameika, Associate Director for the Office of High Energy Physics at the Department of Energy's Office of Science,  announced a new joint NSF/DOE organization toSarah EnoSarah Eno lead the U.S. effort on future Higgs factories.  Professor Sarah Eno was named a leader of the “Higgs Factory Steering FCC FlowFCC FlowCommittee” along with Srini Rajagopalan of Brookhaven National Lab.  The committee also includes two members representing the International Linear Collider. 

More information about the FCC can be found at: https://home.cern/science/accelerators/future-circular-collider.    

The planned FCC.The planned FCC

Gorshkov Wins IEEE Photonics Society Quantum Electronics Award

Adjunct Professor Alexey Gorshkov has won the 2024 Institute of Electrical and Electronics Engineers (IEEE) Photonics Society Quantum Electronics Award.

Each year the IEEE Photonics Society recognizes one individual or team with the award for outstanding contributions to quantum electronics. Gorshkov, who is also a Physicist at the National Institute of Standards and Technology, a Fellow of the Joint Quantum Institute (JQI) and of the Joint Center for Quantum Information and Computer Science and an Institute for Robust Quantum Simulation Senior Investigator, was honored for his research contributions in the areas of understanding, designing, and controlling interacting quantum systems. These topics are essential to the development and operation of technologies like quantum computers, quantum networks and quantum sensors.

"It's a great honor to receive this award,” Gorshkov says. “I am profoundly grateful to my numerous fantastic collaborators, including students and postdocs, and to my colleagues—all of these people were instrumental to completing the research that led to this award."

Gorshkov leads a theoretical research group that tackles a broad range of physics topics encompassing quantum optics, atomic and molecular physics, condensed matter physics and quantum information science. By combining tools and concepts from these areas, his group works to develop powerful quantum technologies, including precise clocks, sensors, quantum communication devices, and quantum computers. These devices require precise control of light, atoms or molecules to harness quantum behaviors and deliver practical advantages. 

IEEE is a global professional organization with more than 460,000 members. It fosters technological innovation by sponsoring conferences, publishing academic journals, honoring the achievements of community members and other activities. The IEEE Photonics Society is the portion of the organization that is focused on research into the quantum behavior of particles of light. 

Original story by Bailey Bedford: https://jqi.umd.edu/news/gorshkov-wins-ieee-photonics-society-quantum-electronics-award