Maryland Gov. Wes Moore Announces $1B ‘Capital of Quantum’ Initiative Centered at UMD

aryland Gov. Wes Moore on January 14, 2025, joined University of Maryland President Darryll J. Pines and IonQ President and CEO Peter Chapman to announce a landmark public-private partnership to catalyze $1 billion in investments and position the state as a global leader in quantum information science and technology.

 Maryland Gov. Wes Moore speaks to the crowd at IonQ on January 14, 2025. Photo by Stephanie S. Cordle.

The “Capital of Quantum” initiative was introduced at an event highlighting Moore’s 2025 economic growth agenda held at IonQ, a leading quantum computing and networking firm founded on UMD research and headquartered in the university’s Discovery District.

“Quantum has the potential to transform every part of our economy and society, from national security to health care,” said Moore. “With extraordinary assets and partnerships, Maryland can—and should—lead in this new emerging sector, and we are moving forward with a clear strategy to make that vision a reality. Together, we will make Maryland the quantum capital of the world."

This strategic partnership aims to unlock more than $1 billion in investments—a combination of state funds, matching federal grants, private-sector investments and philanthropic contributions—over the next five years.

Moore last month signed an executive order that identified quantum computing as an industry that his and Lt. Gov. Aruna Miller’s administration will prioritize through state investment and support. His FY26 budget submission includes $27.5 million as the state’s initial investment toward the Capital of Quantum initiative, which is expected to spur more than $200 million in University of Maryland and partner investments to support academic, technical, workforce and ecosystem support.

The Moore-Miller administration has also committed continued funding for the construction of Zupnik Hall, a new $244 million state-of-the-art facility that includes more than $58 million in private investments and $185.4 million from the state, and which will add more quantum labs to the UMD campus.

“We are deeply grateful to Gov. Moore for his visionary investment in building a brighter future for Maryland’s economy,” said Pines. “He recognizes the immense potential of quantum technology and the possibilities we can explore if we work together to position our region as the global Capital of Quantum. We look forward to collaborating with the governor’s office and regional partners to ensure that this investment yields lasting benefits for all Marylanders.”

With the launch of the Capital of Quantum Initiative, the University of Maryland will move forward with plans to:

  • Recruit top quantum scientists and engineers from around the world to join the ranks of 200-plus UMD quantum faculty members—one of the largest concentrations in the world—to usher in a new wave of discovery and innovation.
  • Expand access to the National Quantum Laboratory (QLab), a unique UMD partnership with IonQ that provides students, researchers and entrepreneurs from around the world with hands-on access to quantum computers and scientists.
  • Hire test and evaluation experts to support quantum-focused projects and construct a new building for UMD’s Applied Research Laboratory for Intelligence and Security.
  • Create additional facilities to house an expanded Quantum Startup Foundry, a business accelerator based in UMD’s Discovery District that provides resources and support for entrepreneurs and startups bringing quantum technologies to market.
  • Launch education, outreach and training initiatives to include high school quantum curriculum, master’s and certificate programs, and workforce retraining opportunities.

Subject to the governor’s budget being approved, IonQ, an anchor partner in the initiative, will grow its corporate headquarters into a 100,000-square-foot facility with a data center, laboratories and office space within UMD’s Discovery District. IonQ also intends to double its corporate headquarters workforce to at least 250 people in the Maryland region over the next five years. Tuesday's announcement, once approved by the legislature, is expected to create high-paying and skilled jobs in diverse fields such as construction, software and hardware engineering, operations, applied physics, networking and more.

Investments in quantum computing are investments in Maryland's future, said Chapman.

“Through Gov. Moore’s strategic economic development initiative and proposed investment in quantum, he is not only supporting cutting-edge research and innovation but fostering economic growth and job creation in the state,” he said. “The governor's commitment is a testament to his vision for the pivotal role that quantum science will play in the state’s economic development and technological leadership. This investment will also enhance our collaboration with the University of Maryland to solidify the region as a global leader in quantum innovation.”

Original story: https://cmns.umd.edu/news-events/news/maryland-gov-wes-moore-announces-1-billion-capital-quantum

From Space Science to Science Fiction

From her earliest years, Adeena Mignogna (B.S. ’97, physics; B.S. ’97, astronomy) always saw space in her future. It started with “Star Wars.”

“I have memories of watching the first ‘Star Wars’ movie with R2-D2 and C-3PO when I was about 6 years old and I really connected with the robots, wanting to know how we make this a reality,” she recalled. “For a while, I thought I was going to grow up and have my own company that would make humanoid robots, but the twist was, we were going to live and work on the moon. I could even picture my corner office and the view of the moon out the window.”Adeena Mignogna Adeena Mignogna

For Mignogna, that boundless imagination and her childhood fascination with space and science launched two successful and very different careers—one in aerospace as a mission architect at Northrop Grumman, developing software and systems for satellites, and the other as a science fiction writer, spinning stories of robots, androids and galactic adventures in her many popular books. For Mignogna, space science and science fiction turned out to be a perfect combination. 

“I think of it as kind of like a circular thing—science fiction feeds our imagination, which possibly inspires us to do things in science. And science feeds the science fiction,” Mignogna explained. “Working in the space industry is something that I always wanted to do, and I always wanted to write as well, so I’m glad that I'm really doing it.”

Drawn to science

The daughter of an engineer, Mignogna was always drawn to science and technology.

“I am my father's daughter,” she said. “My dad brought home computers, and I learned to program in BASIC, so it was kind of always obvious that I was always going to do something STEM-ish.” 

Inspired by the real-life missions of NASA’s space shuttle and the Magellan deep space probe and popular space dramas like “Star Wars” and “Star Trek,” Mignogna’s interest in aerospace blossomed into a full-on career plan. As she prepared to start college at the University of Maryland in the early ’90s, she began steering toward two majors.

“At first, I thought maybe I'm going to major in astronomy because I loved space and space exploration,” Mignogna recalled. “But my high school physics teacher had degrees in physics, and he had done a lot of different things. He had worked at Grumman during the Apollo era, he had done astronomy work, and so I was like, ‘Okay, if I major in physics, I could do space stuff, I could do anything.’ So in the end, I majored in both.”

Surprisingly—at least to her—at UMD, Mignogna discovered she loved physics.

“What do I love about physics? It's very fundamental to how everything works,” she explained. “I used to tease my friends in college who majored in other sciences that at the end of the day, they were all just studying other branches of physics—like math is just the tool we use to describe physics and chemistry is an offshoot of atomic physics and thermodynamics. And even though I was making fun, I do probably think there's some truth to that, and that might be why I like physics so much.”

Hands-on with satellites

By her sophomore year, Mignogna got her first hands-on experience with aerospace technology.  

“I wound up getting a job in the Space Physics Group, and they built instrumentation for satellites,” Mignogna explained. “I happened to learn about this at the right time when they were looking for students for a new mission, and I worked on that mission from day one till we turned the instrument over to [NASA’s] Goddard Space Flight Center, which was very cool.”

Working in that very hands-on lab assembling and sometimes reassembling science instruments that would eventually fly in space, Mignogna realized she was on the right path. 

“I was touching spaceflight hardware. I was touching stuff that was going into space,” she recalled. “It was really exciting.”

For Mignogna, working side by side with space scientists at UMD and getting hands-on training in skills like CAD drafting gave her the tools she needed to land her first job at NASA’s Goddard Space Flight Center.

Mignogna eventually landed at Orbital Sciences Corporation, which later became part of Northrop Grumman. For the next 16 years—earning her master’s degree in computer science from the Georgia Institute of Technology along the way—she expanded her space software and systems expertise and became a leader in Northrop’s satellite engineering program.

“On the software side, I worked on our command and control software. We have a software suite that controls the satellites, and what I loved was that it gave me exposure and insight into so many different kinds of satellites,” Mignogna said. “With systems engineering, I’m able to go through what we call the full life cycle of the mission. When NASA says, ‘Hey, we need a satellite that's going to do X, Y, Z,’ as a systems engineer, we’re the ones who break that down, and I’m kind of the end-to-end broader picture person in that process. The group that I'm closely associated with today is responsible for Cygnus, which is one of the resupply capsules to the International Space Station.”

From science to science fiction

Over the years, as Mignogna’s career reached new heights so did her work as a science fiction writer, a creative effort that started when she was in high school.

“My dad was a fan of Isaac Asimov and Robert Heinlein, so I knew they were engineers and scientists who also wrote science fiction, and that was something I always wanted to do,” Mignogna said. “At first, I didn't think I could write novels, I thought I could only do short stories. But around 2009, I figured out I could, and I’ve been doing it ever since.”

With titles like “Crazy Foolish Robots” and “Robots, Robots Everywhere,” Mignogna’s Robot Galaxy Series combines science fiction with humor, philosophy and, of course, robots. Her latest book “Lunar Logic” is set on the moon, 100 years from now.

“There are humanoid robots, built and manufactured on the moon, and they live on the moon. And they don't know anything about humans or why they're there,” Mignogna explained. “And then little things happen and they start to question what's going on and why they're there and eventually they kind of figure it all out.”

In Mignogna’s sci-fi worlds, the only limit is her own imagination, which is exactly what makes her work as a writer so enjoyable. 

“In my science fiction work, it’s my way or the highway,” she said. “I can write whatever I want, and I can make it however I want, and there's some satisfaction in that.”

For Mignogna, writing science fiction also provides an opportunity to advance another mission—to get more people interested and excited about science. In regular appearances at sci-fi conferences and other gatherings, Mignogna shares her passion for STEM, hoping to inspire the next generation of scientists—and everyone else.

“All this technology we have today comes from generations upon generations of fundamental science, technology, engineering, mathematics,” she explained, “so if we're going to do more things, we need people to go into these fields. “

As someone who’s always seen the importance of science in her own life, it’s a message she’s committed to sharing.

“You don't have to understand everything about science, but you can appreciate it,” Mignogna noted. “My hope is maybe if I can just connect with a few people indirectly or directly, I can make a difference.” 

 

Written by Leslie Miller

Faculty, Staff, Student and Alumni Awards & Notes

We proudly recognize members of our community who recently garnered major honors, began new positions and more.

Faculty and Staff 
Students
Alumni
  • Adam Ehrenberg (Ph.D, '24) joined the Institute for Defense Analyses (IDA) as a Research Staff Member.
  • Chad Mitchell (Ph.D., '07) is a physicist at the Accelerator Technology & Applied Physics Division of Lawrence Berkeley National Lab.
  • Luke Sollitt (B.S., '97) is a planetary physicist for NASA.
  • C. V. Vishveshwara (Ph.D., '68) was recalled as Scientist of the Day on March 6, 2025.
Department News 

Zohreh Davoudi Awarded Presidential Early Career Award for Scientists and Engineers

Zohreh Davoudi, an associate professor of physics at the University of Maryland and Maryland Center for Fundamental Physics, received the Presidential Early Career Award for Scientists and Engineers. The award, which was established in 1996 to recognize young professionals who have demonstrated exceptional potential for leadership in their fields, is the highest honor the U.S. government bestows on early-career scientists and engineers.Zohreh Davoudi Zohreh Davoudi

Davoudi, who is also a Fellow of the Joint Center for Quantum Information and Computer Science and the Associate Director for Education at the NSF Quantum Leap Challenge Institute for Robust Quantum Simulation, is one of 398 scientists and engineers nationwide to be acknowledged by President Biden.

“I am truly honored by this recognition,” Davoudi says. “This award signifies that the President and the U.S. government appreciate the important role scientists and engineers play in advancing society. I am excited to continue exploring the frontiers of nuclear physics and quantum information science using advanced classical- and quantum-computational methods and to continue building a community of amazing junior and senior collaborators who share the same or similar goals.”

Davoudi’s research focuses on strongly interacting quantum systems and investigates how elementary particles, like quarks and gluons, come together and form the matter that makes up our world. Her work to understand the foundations of matter includes developing theoretical frameworks and applying cutting-edge tools, like quantum simulations, to studying problems in nuclear and high-energy physics. Ultimately, she hopes to describe the evolution of mater into steady states that occurred in the early universe and that happens at a smaller scale in the aftermath of high-energy particle collisions, like those in experiments at the Large Hadron Collider.

Davoudi has also been acknowledged by other awards, including a Simons Emmy Noether Faculty Research Fellowship, an Alfred P. Sloan Fellowship, a Department of Energy's Early Career Award and a Kenneth Wilson Award in Lattice Gauge Theory.

“Zohreh is an exceptionally agile physicist and an expert in nuclear theory,” says Steve Rolston, a professor and chair of the Department of Physics at the University of Maryland. “She has embraced the new world of quantum computing and is now a leader in figuring out how to use quantum computation to solve challenging nuclear and high-energy physics problems.”

Original story by Bailey Bedford