From Space Science to Science Fiction

From her earliest years, Adeena Mignogna (B.S. ’97, physics; B.S. ’97, astronomy) always saw space in her future. It started with “Star Wars.”

“I have memories of watching the first ‘Star Wars’ movie with R2-D2 and C-3PO when I was about 6 years old and I really connected with the robots, wanting to know how we make this a reality,” she recalled. “For a while, I thought I was going to grow up and have my own company that would make humanoid robots, but the twist was, we were going to live and work on the moon. I could even picture my corner office and the view of the moon out the window.”Adeena Mignogna Adeena Mignogna

For Mignogna, that boundless imagination and her childhood fascination with space and science launched two successful and very different careers—one in aerospace as a mission architect at Northrop Grumman, developing software and systems for satellites, and the other as a science fiction writer, spinning stories of robots, androids and galactic adventures in her many popular books. For Mignogna, space science and science fiction turned out to be a perfect combination. 

“I think of it as kind of like a circular thing—science fiction feeds our imagination, which possibly inspires us to do things in science. And science feeds the science fiction,” Mignogna explained. “Working in the space industry is something that I always wanted to do, and I always wanted to write as well, so I’m glad that I'm really doing it.”

Drawn to science

The daughter of an engineer, Mignogna was always drawn to science and technology.

“I am my father's daughter,” she said. “My dad brought home computers, and I learned to program in BASIC, so it was kind of always obvious that I was always going to do something STEM-ish.” 

Inspired by the real-life missions of NASA’s space shuttle and the Magellan deep space probe and popular space dramas like “Star Wars” and “Star Trek,” Mignogna’s interest in aerospace blossomed into a full-on career plan. As she prepared to start college at the University of Maryland in the early ’90s, she began steering toward two majors.

“At first, I thought maybe I'm going to major in astronomy because I loved space and space exploration,” Mignogna recalled. “But my high school physics teacher had degrees in physics, and he had done a lot of different things. He had worked at Grumman during the Apollo era, he had done astronomy work, and so I was like, ‘Okay, if I major in physics, I could do space stuff, I could do anything.’ So in the end, I majored in both.”

Surprisingly—at least to her—at UMD, Mignogna discovered she loved physics.

“What do I love about physics? It's very fundamental to how everything works,” she explained. “I used to tease my friends in college who majored in other sciences that at the end of the day, they were all just studying other branches of physics—like math is just the tool we use to describe physics and chemistry is an offshoot of atomic physics and thermodynamics. And even though I was making fun, I do probably think there's some truth to that, and that might be why I like physics so much.”

Hands-on with satellites

By her sophomore year, Mignogna got her first hands-on experience with aerospace technology.  

“I wound up getting a job in the Space Physics Group, and they built instrumentation for satellites,” Mignogna explained. “I happened to learn about this at the right time when they were looking for students for a new mission, and I worked on that mission from day one till we turned the instrument over to [NASA’s] Goddard Space Flight Center, which was very cool.”

Working in that very hands-on lab assembling and sometimes reassembling science instruments that would eventually fly in space, Mignogna realized she was on the right path. 

“I was touching spaceflight hardware. I was touching stuff that was going into space,” she recalled. “It was really exciting.”

For Mignogna, working side by side with space scientists at UMD and getting hands-on training in skills like CAD drafting gave her the tools she needed to land her first job at NASA’s Goddard Space Flight Center.

Mignogna eventually landed at Orbital Sciences Corporation, which later became part of Northrop Grumman. For the next 16 years—earning her master’s degree in computer science from the Georgia Institute of Technology along the way—she expanded her space software and systems expertise and became a leader in Northrop’s satellite engineering program.

“On the software side, I worked on our command and control software. We have a software suite that controls the satellites, and what I loved was that it gave me exposure and insight into so many different kinds of satellites,” Mignogna said. “With systems engineering, I’m able to go through what we call the full life cycle of the mission. When NASA says, ‘Hey, we need a satellite that's going to do X, Y, Z,’ as a systems engineer, we’re the ones who break that down, and I’m kind of the end-to-end broader picture person in that process. The group that I'm closely associated with today is responsible for Cygnus, which is one of the resupply capsules to the International Space Station.”

From science to science fiction

Over the years, as Mignogna’s career reached new heights so did her work as a science fiction writer, a creative effort that started when she was in high school.

“My dad was a fan of Isaac Asimov and Robert Heinlein, so I knew they were engineers and scientists who also wrote science fiction, and that was something I always wanted to do,” Mignogna said. “At first, I didn't think I could write novels, I thought I could only do short stories. But around 2009, I figured out I could, and I’ve been doing it ever since.”

With titles like “Crazy Foolish Robots” and “Robots, Robots Everywhere,” Mignogna’s Robot Galaxy Series combines science fiction with humor, philosophy and, of course, robots. Her latest book “Lunar Logic” is set on the moon, 100 years from now.

“There are humanoid robots, built and manufactured on the moon, and they live on the moon. And they don't know anything about humans or why they're there,” Mignogna explained. “And then little things happen and they start to question what's going on and why they're there and eventually they kind of figure it all out.”

In Mignogna’s sci-fi worlds, the only limit is her own imagination, which is exactly what makes her work as a writer so enjoyable. 

“In my science fiction work, it’s my way or the highway,” she said. “I can write whatever I want, and I can make it however I want, and there's some satisfaction in that.”

For Mignogna, writing science fiction also provides an opportunity to advance another mission—to get more people interested and excited about science. In regular appearances at sci-fi conferences and other gatherings, Mignogna shares her passion for STEM, hoping to inspire the next generation of scientists—and everyone else.

“All this technology we have today comes from generations upon generations of fundamental science, technology, engineering, mathematics,” she explained, “so if we're going to do more things, we need people to go into these fields. “

As someone who’s always seen the importance of science in her own life, it’s a message she’s committed to sharing.

“You don't have to understand everything about science, but you can appreciate it,” Mignogna noted. “My hope is maybe if I can just connect with a few people indirectly or directly, I can make a difference.” 

 

Written by Leslie Miller

Zohreh Davoudi Awarded Presidential Early Career Award for Scientists and Engineers

Zohreh Davoudi, an associate professor of physics at the University of Maryland and Maryland Center for Fundamental Physics, received the Presidential Early Career Award for Scientists and Engineers. The award, which was established in 1996 to recognize young professionals who have demonstrated exceptional potential for leadership in their fields, is the highest honor the U.S. government bestows on early-career scientists and engineers.Zohreh Davoudi Zohreh Davoudi

Davoudi, who is also a Fellow of the Joint Center for Quantum Information and Computer Science and the Associate Director for Education at the NSF Quantum Leap Challenge Institute for Robust Quantum Simulation, is one of 398 scientists and engineers nationwide to be acknowledged by President Biden.

“I am truly honored by this recognition,” Davoudi says. “This award signifies that the President and the U.S. government appreciate the important role scientists and engineers play in advancing society. I am excited to continue exploring the frontiers of nuclear physics and quantum information science using advanced classical- and quantum-computational methods and to continue building a community of amazing junior and senior collaborators who share the same or similar goals.”

Davoudi’s research focuses on strongly interacting quantum systems and investigates how elementary particles, like quarks and gluons, come together and form the matter that makes up our world. Her work to understand the foundations of matter includes developing theoretical frameworks and applying cutting-edge tools, like quantum simulations, to studying problems in nuclear and high-energy physics. Ultimately, she hopes to describe the evolution of mater into steady states that occurred in the early universe and that happens at a smaller scale in the aftermath of high-energy particle collisions, like those in experiments at the Large Hadron Collider.

Davoudi has also been acknowledged by other awards, including a Simons Emmy Noether Faculty Research Fellowship, an Alfred P. Sloan Fellowship, a Department of Energy's Early Career Award and a Kenneth Wilson Award in Lattice Gauge Theory.

“Zohreh is an exceptionally agile physicist and an expert in nuclear theory,” says Steve Rolston, a professor and chair of the Department of Physics at the University of Maryland. “She has embraced the new world of quantum computing and is now a leader in figuring out how to use quantum computation to solve challenging nuclear and high-energy physics problems.”

Original story by Bailey Bedford

Next Gen Retroreflectors Launch to the Moon

On January 15, 2025, a precision prism reflector devised by UMD physicists once again headed to the moon, continuing a tradition begun in 1969, when the Apollo 11 crew positioned still-functioning Lunar Laser Ranging Retroreflectors (LLRR). The new lunar lander reached the Moon on March 2, 2025, and the next day successfully communicated with French Lunar Laser Ranging Observatory at Grasse, France. A single 10 cm diameter corner cube retroreflector. Credit: Doug CurrieA single 10 cm diameter corner cube retroreflector. Credit: Doug Currie

One of the physicists responsible for the original retroreflectors, Doug Currie, is the PI for the current version, Next Generation Lunar Retroreflectors (NGLR).  Using intense, brief lasers pulses, scientists on Earth will reflect light off the instrument, allowing measurements of the earth-moon distance to within 1 mm of accuracy. Such precision will allow better understanding of the moon’s liquid corA SpaceX Falcon 9 rocket carrying Firefly Aerospace’s Blue Ghost Mission One lander on January 15, 2024. Credit: NASA/Frank MichauxA SpaceX Falcon 9 rocket carrying Firefly Aerospace’s Blue Ghost Mission One lander on January 15, 2024. Credit: NASA/Frank Michauxe and of general relativity.

Currie’s proposal was accepted as part of NASA’s Commercial Lunar Payload Services (CLPS) project, utilizing partnerships with private industry to facilitate space launches.  Blue Ghost Mission 1 by Firefly Aerospace launched at 1:11 a.m. on January 15 aboard a SpaceX Falcon 9 rocket from NASA’ Kennedy Space Center in Florida, with NGLR-1 and nine other experiments. 

Currie’s storied career and the preparation for the NGLR were detailed in the September 2024 issue of Terp magazine.

He was a UMD Assistant Professor, working with LLRR PI Professor Carroll Alley, at the time of the historic first venture of humans to the moon. In 2019, he was interviewed on the 50th anniversary of Apollo 11, and was also selected for further work on retroreflectors. While the Apollo 11 retroreflectors were an array of small precision mirrors, the NGLR-1 is is a single 10 cm diameter corner cube retroreflector.

In addition to Currie, the UMD team on NGLR-1 included co-PI Drew Baden, deputy PI Dennis Wellnitz, Project Manager Ruth Chiang Carter and researchers Martin Peckerar, Chensheng Wu and Laila Wise.

Liftoff occurs at 43:01.

Twisted Light Gives Electrons a Spinning Kick

It’s hard to tell when you’re catching some rays at the beach, but light packs a punch. Not only does a beam of light carry energy, it can also carry momentum. This includes linear momentum, which is what makes a speeding train hard to stop, and orbital angular momentum, which is what the earth carries as it revolves around the sun.

In a new paper, scientists seeking better methods for controlling the quantum interactions between light and matter demonstrated a novel way to use light to give electrons a spinning kick. They reported the results of their experiment, which shows that a light beam can reliably transfer orbital angular momentum to itinerant electrons in graphene, on Nov. 26, 2024, in the journal Nature Photonics.

Having tight control over the way that light and matter interact is an essential requirement for applications like quantum computing or quantum sensing. In particular, scientists have been interested in coaxing electrons to respond to some of the more exotic shapes that light beams can assume. For example, light carrying orbital angular momentum swirls around its axis as it travels. When viewed head-on, a light beam with orbital angular momentum contains a dark spot in the middle, a vortex opened up by the beam’s corkscrew character.In a new experiment, light beams carrying orbital angular momentum caused electrons in graphene to gain (blue beam) and lose (red beam) angular momentum, transporting them across the sample and generating a current that researchers measured. (Credit: Mahmoud Jalali Mehrabad/JQI)In a new experiment, light beams carrying orbital angular momentum caused electrons in graphene to gain (blue beam) and lose (red beam) angular momentum, transporting them across the sample and generating a current that researchers measured. (Credit: Mahmoud Jalali Mehrabad/JQI)

“The interaction of light that has orbital angular momentum with matter has been thought about since the 90s or so,” says Deric Session, a postdoctoral researcher at JQI and the University of Maryland (UMD) who is the lead author of the new paper. “But there have been very few experiments actually demonstrating the transfer.”

Part of the challenge has been a size mismatch. In order for electrons to feel a tug from a light beam carrying momentum, they have to experience the way that the beam changes as it passes by. In many cases, the length over which a light beam changes dwarfs the size of the matter that researchers are interested in manipulating, making it especially challenging to pick out electrons as targets.

For instance, atoms and their orbiting electrons—mainstays of quantum physics experiments and favorite targets for precise manipulation—are roughly 1,000 times smaller than the light beams that researchers use to interact with them. Light travels as repeating waves of electric and magnetic fields, and the length that a light beam travels before it repeats is called the wavelength. In addition to being an important characteristic size, the wavelength of light also determines the amount of energy carried by individual particles of light called photons. Only photons that carry particular amounts of energy can interact with atoms, and those photons tend to have wavelengths much bigger than the atoms themselves. So while atoms as a whole will happily absorb energy and momentum from these photons, the wavelength is too big for the internal pieces of the atom—the nucleus and the electrons—to notice any relative difference. This makes it very difficult to transfer orbital angular momentum solely to an atom’s electrons.

One way to overcome this difficulty is to shrink the wavelength of light. But that increases the energy carried by each photon, ruling out atoms as reliable targets. In the new experiment, the researchers, who included JQI Fellows Mohammad Hafezi and Nathan Schine, JQI Co-Director Jay Sau and JQI Adjunct Fellow Glenn Solomon, pursued an alternate approach: Instead of shrinking the wavelength of the light, they puffed up electrons to make them occupy more space.

Electrons bound to the nucleus of an atom can only roam so far before they are liberated from the atom and useless for experiments. But in conductive materials, electrons have more latitude to travel far and wide while remaining under control. The researchers turned to graphene, a flat material that is one of the best known electrical conductors, in search of a way to make electrons take up more space.

By cooling a sample of graphene down to just 4 degrees above absolute zero and subjecting it to a strong magnetic field, electrons that are ordinarily free to move around become trapped in loops called cyclotron orbits. As the field gets stronger, the orbits become tighter and tighter until many circulating electrons are packed in so tightly that no more can fit. Although the orbits are tight, they are still much larger than the electron orbitals in atoms—the perfect recipe for getting them to notice light carrying orbital angular momentum.

The researchers used a sample of graphene wired up with electrodes for their experiments. One electrode was in the middle of the sample, and another made a ring around the outer edges. Earlier theoretical work, developed in 2021 by former JQI and UMD graduate student Bin Cao and three other authors of the new paper, suggested that electrons circulating in such a sample could gain angular momentum in chunks from incoming light, increase the size of their orbits and eventually get absorbed by the electrodes.

“The idea is that you can change the size of the cyclotron orbits by adding or subtracting orbital angular momentum from the electrons, thus effectively moving them across the sample and creating a current,” Session says.

 

In the new paper, the research team reported observing a robust current that survived under a wide range of experimental conditions. They hit their graphene sample with light carrying orbital angular momentum that circulated clockwise and observed the current flowing in one direction. Then they hit it with light carrying counterclockwise orbital angular momentum and found that the direction of the current flipped. They flipped the direction of the applied magnetic field and observed the current flip directions, too—an expected finding since changing the magnetic field direction also swaps the direction electrons flow in their cyclotron orbits. They changed the voltage across the inner and outer electrodes and continued to see the same difference between currents generated by clockwise and counterclockwise vortex light. They also tested sending circularly polarized light, which carries an intrinsic angular momentum, at the sample, and they found that it barely generated any current. In all cases, the signal was clear: The current only appeared in the presence of light carrying orbital angular momentum, and the direction of the current was correlated with whether the light carried momentum that spun clockwise or counterclockwise.

The result was the culmination of several years of work, which included some false starts with sample fabrication and difficulties collecting enough good data from the experiment.

“I spent over a year just trying to make graphene samples with this kind of geometry,” Session says. Ultimately, Session and the team reached out to a group they had worked with before, led by Roman Sordan, a physicist at the Polytechnic University of Milan in Italy and an expert at preparing graphene samples. “They were able to come through and make the samples that we used,” says Session.

Once they had samples that worked well, they still had trouble aligning their twisted light with the sample to observe the current.

“The signal we were looking at was not quite consistent,” says Mahmoud Jalali Mehrabad, a postdoctoral researcher at JQI and UMD and a co-author of the paper. “Then one day, with Deric, we started to do this spatial sweep. And we kind of mapped the sample with really high accuracy. Once we did that—once we nailed down the very peak, optimized position for the beam—everything started to make sense.” Within a week or so, they had collected all the data they needed and could pick out all the signals of the current’s dependence on the orbital angular momentum of the beam.

Mehrabad says that, in addition to demonstrating a new method for controlling matter with light, the technique might also enable fundamentally new measurements of electrons in quantum materials. Specially prepared light beams, combined with interference measurements, could be used as a microscope that can image the spatial extent of electrons—a direct measurement of the quantum nature of electrons in a material.

“Being able to measure these spatial degrees of freedom of free electrons is an important part of measuring the coherence properties of electrons in a controllable manner—and manipulating them,” Mehrabad says. “Not only do you detect, but you also control. That’s like the holy grail of all this.”

Original story: https://jqi.umd.edu/news/twisted-light-gives-electrons-spinning-kick

In addition to Session, Hafezi, Schine, Sau, Solomon, Cao, Sordan and Mehrabad, the paper had several other authors: Nikil Paithankar, a graduate student at the Polytechnic University of Milan in Italy; Tobias Grass, a former JQI postdoctoral researcher who is now a research fellow at the Donostia International Physics Center in Donostia, Spain; Christian Eckhardt, a graduate student at the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany; Daniel Gustavo Suárez Forero, a former JQI postdoctoral researcher who will be starting as an assistant professor of physics at the University of Maryland, Baltimore County in 2025; Kevin Li, a former JQI and UMD undergraduate student; Mohammad Alam, a former JQI and UMD undergraduate student who now works at IonQ; and Kenji Watanabe and Takashi Taniguchi, both researchers at the National Institute for Materials Science in Tsukuba, Japan.

This work was supported by ONR N00014-20-1-2325, AFOSR FA95502010223, ARO W911NF1920181, MURI FA9550-19-1-0399, FA9550-22-1-0339, NSF IMOD DMR-2019444, ARL W911NF1920181, Simons and Minta Martin foundations, and EU Horizon 2020 project Graphene Flagship Core 3 (grant agreement ID 881603). Tobias Grass acknowledges funding by BBVA Foundation (Beca Leonardo a Investigadores en Fisica 2023) and Gipuzkoa Provincial Council (QUAN-000021-01).