In Memoriam

It is with much sadness that the Department of Physics announces the passing of several members of our community. 

  • Gerald Abrams (Ph.D., '67), who spent most of his career at Lawrence Berkeley National Laboratory, died on March 31, 2020.
  • Nick Chant, who researched nuclear physics and served as the department's graduate director, died on October 15, 2021.
  • Thomas Ferbel, a high energy physicist who held UMD appointments since 2013, died on March 13, 2022
  • Lavonne Dragt, wife of Prof. Emeritus Alex Dragt, died on November 12, 2021.
  • Charles S. Dulcey Jr (Ph.D., 1982), who worked as a research physicist at the Naval Research Laboratory, died on Dec. 30, 2021
  • Michael Fisher, whose many honors included a USM Regents Professorship, died on November 26, 2021.

Alicia Kollár Bridges Abstract Math with Realities of the Lab

Eugene Wigner, a Nobel Prize-winning mathematical physicist, once said, “The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve.”

Indeed, mathematics may seem abstract or even irrelevant until it’s used to describe the natural world around us. The reverse is occasionally also true: Physical realities, when brought to a mathematician’s attention, can inspire new questions and new discoveries. 

The research of Alicia Kollár, a Chesapeake Assistant Professor of Physics at the University of Maryland and a Fellow of the Joint Quantum Institute, embodies the give and take of this relationship between physics and mathematics. In her lab, she brings abstract theories to life and in turn collaborates on new theorems. She has forged a research program of manipulating light on a chip, coaxing the light into behaving as though it lives on the surface of a sphere, or a mathematical abstraction known as a hyperbolic surface. She also collaborates with mathematicians, furthering both the understanding of what these chips can do and their underlying mathematics. 

Alicia KollárAlicia KollárA direct collaboration with pure mathematicians is uncommon for a physicist, particularly an experimentalist. But Kollár is no stranger to mathematics. Raised by two mathematicians in Princeton, New Jersey, she was exposed to the discipline early on. However, Kollár said her parents didn’t pressure her to pursue mathematics growing up. 

“It never crossed my dad’s mind to try to force me to do what he loved,” Kollár said. “He considered that pointless, like ‘You should go into research for you, not for somebody else’s expectations.’” 

Her father, János Kollár, a professor of mathematics at Princeton, had a slightly different take. 

“She was always interested in science, so I didn’t need to apply any influence,” he said. “If she was only interested in rock music it might have been different.”

Free to pursue whatever she pleased (short of rock music), Kollár studied advanced math, but without much enthusiasm. 

“I was fortunate to be able to take quite a bit of college-level pure math as a high schooler,” she said. “And I would say that I think I was good at it, but I didn’t love it. I just kind of didn’t care.” 

What really caught Kollár’s attention was physics. Her high school physics teacher’s style really resonated with her. 

“He was a crusty old dude that loved Far Side cartoons,” she recalled. “And he wouldn’t put up with anybody that was too cool for school. He taught non-calculus physics, but he taught that you have to think about it—not ‘Here’s a method learn how to do it.’ We became really good friends, and I really liked thinking about how it works, you know, the physical intuition part of physics.”

She attended college at Princeton University, remaining in her hometown and further developing her fascination with physics. 

“I was sort of divided between math and physics as a freshman,” Kollár said. “But the more physics I took, I never looked back.”

During her first summer research experience, she was charged with taking apart a telescope mount for a cosmology group. That’s when she found her calling as an experimentalist.  

“I had a lot of fun that summer,” she said, smiling. “I ended up building a 1500-pound steel support structure. I was up to my eyeballs in machine oil and loving every minute of it.”

When applying to graduate schools, Kollár’s soon-to-be Ph.D. adviser Benjamin Lev, now an associate professor of physics and applied physics at Standford University, called her and convinced her to join his lab. He enticed her with the promise that, as an atomic and optical physicist, she could do both theory and experiment side by side. She joined his group at the University of Illinois at Urbana-Champaign, and, in her first year, moved with the whole team to Stanford.

Kollár’s Ph.D. work consisted of building a novel experimental apparatus from scratch, designed to trap atoms and photons together and allow them to influence each other in significant, controllable ways. The resulting experimental setup launched a new direction in its field, according to Lev. 

“From beginning to end, it was just an amazing graduate school experience, where you see something from the inception of the idea to actually showing that this new experimental technique can work,” Lev said. “And she was always a thought partner. We were thinking through the ideas, writing the equations on the board, working with theorists, and she was an equal thought partner on all of that.”

After graduate school, Kollár found herself returning to Princeton. “Princeton is a black hole,” she said. “You can never quite leave. Maybe it’s the Hotel California, you know?”

She became a postdoctoral researcher in the lab of Andrew Houck, a professor of electrical and computer engineering and a Fellow in the Princeton Center for Theoretical Science. Houck worked with coplanar waveguides—little paths printed on a circuit board that confine light in a tube the thickness of a human hair. These paths have become the setting of many of Kollár’s mathematical explorations. 

Kollár was in her office one day, playing around with one of these coplanar waveguide chips. This one contained a waveguide lattice—a repeating grid, one waveguide after the other. Lattices are a familiar concept to physicists from the study of metals, where atomic nuclei form repeating patterns, extending in all three directions.

Kollar’s mathematical training bubbled up, flooding her brain with ideas. She envisioned a similar lattice, but instead of one dimension it would extend in two. And, she realized, thanks to the properties of coplanar waveguides, there was a lot of flexibility in the ways she could shape these grids.  

Instead of being points, as in a conventional lattice of nuclei in a metal, the sites of this lattice were paths—lines that guide light around. And, Kollár could bend and stretch these lines however she wanted without changing the underlying physics, as long as the total length stayed the same. 

Kollár realized that by scrunching and stretching these waveguides, she could connect them to each other in ways that aren’t possible for normal lattices of points, at least not in the world we are used to. Instead, the waveguides would act as though they are on the surface of a sphere, or a mathematical construction known as a hyperbolic surface, where traditional ideas of parallel lines, triangles and navigation break down.  

A hyperbolic surface is, in a sense, the opposite of a sphere. So much so that a two-dimensional hyperbolic surface can’t exist within our three-dimensional world—basically, it doesn’t fit. Kollár said the best way to imagine hyperbolic space is with some of M. C. Escher’s pictures. 

Kollár and her collaborators successfully showed that coplanar waveguides can indeed form lattices that act as though they live on a hyperbolic surface. 

Kollár found that these hyperbolic lattices had some cool physics properties. In particular, she found that they gave rise to something called flat bands—paradoxical places where, regardless of how fast a particle is moving, its energy stays the same. These flat bands are thought to be behind some of the most intriguing unexplained physical effects, like the fractional quantum Hall effect, spin-​liquids, and even some cases of high-temperature superconductivity. 

“When I discovered these flat bands, I actually thought I made a mistake in my code,” Kollár said, “I turned around to my lab partner, and I was like, ‘I think I messed up but if I didn’t, this is really cool.’ And so at the time, we didn't understand where that was coming from. What we've since come to understand is that was really just the tip of the iceberg.”

To understand the full potential of this new technique, Kollár joined forces with Peter Sarnak, professor of mathematics at the Institute for Advanced Study at Princeton. This collaboration has proved extremely fruitful. Together, they showed that the flat bands were far from a mistake. In fact, they proved that the flat bands must exist in any hyperbolic lattice of the kind Kollár creates.

“There's been this constant feedback between very general math theorems leading to good examples and then good examples leading to new math theorems,” Kollár said.

Now, she is leading her own group at UMD and is working on coupling bits of quantum information—called qubits—to these exotic lattices. She has assembled a group of like-minded students, interested in addressing novel physics. Although there’s no way to know exactly what the future holds for Kollár, it’s fair to anticipate that she will continue to follow her nose to interesting and unexpected places. 

“I think what was special about Alicia is that she always had her own mind and she did not want to follow what others were doing,” her father, János, said. “It can be frustrating when you're a two-year-old, but I think in the long run if you can follow your own mind very seriously it can work out very well.”

Written by Dina Genkina

Reaching for the Stars (and the Exoplanets)

NASA astrophysicist Christopher Stark (Ph.D. ’10, physics) is on a mission to broaden our horizons in space

Christopher Stark (Ph.D. ’10, physics) grew up in Mt. Pleasant, Iowa, a small midwestern town known in part for one of its most famous natives, James Van Allen, a physicist who was very influential in the development of space science in the United States and even graced the cover of Time magazine in 1959. 

“Van Allen discovered the Van Allen radiation belts around Earth and I feel like this was sort of common knowledge in Mt. Pleasant,” Stark explained. “I went to James Van Allen Elementary School and my parents happened to live in Van Allen’s childhood home at one point.”

You might think all that stellar influence would spark a childhood passion for astronomy or maybe even physics. It didn’t.Chris Stark Chris Stark

“In spite of those coincidences, I didn’t grow up wanting to be an astronomer,” Stark said. “I didn’t stargaze at night, I wasn’t big into science fiction and space travel, none of that.”

But Stark eventually decided to become an astrophysicist, inspired by a college lecture that quite literally changed his life.

“The lecture was about exoplanets,” he recalled. “I remember thinking it was unbelievable that we have the ability to detect planets around stars outside our solar system. It was like a lightbulb went off! I knew exactly what I wanted to do with the rest of my life.”

Since then, Stark has spent nearly two decades unraveling the mysteries of distant planetary systems and developing tools to study them. In 2020, after years of exoplanet research and mission design, Stark became deputy integration test and commissioning project scientist for the James Webb Space Telescope (JWST)—the biggest, most powerful telescope ever launched into space.

“It’s incredibly exciting,” Stark said. “Webb was designed to look in the infrared at the faintest galaxies that one would possibly imagine—galaxies so distant that you’re essentially looking back in time to the first stars and the first galaxies that were formed. It’s an amazing opportunity.”

Falling in love with physics

For Stark, growing up in a small town in Iowa was worlds away from a career studying extrasolar planets and planning missions in space. As a kid, he had plenty of energy and liked to build things, encouraged by his industrious parents.

“My dad was a carpenter by trade for quite a while, and I can’t remember a time when he and my mom weren’t working on a project,” Stark explained. “It’s difficult to recall being around the house and not helping them with something, like re-roofing their house or laying a limestone retaining wall.”

In 1999 when Stark enrolled at the University of Northern Iowa, physics and astronomy were the furthest things from his mind. He was taking economics and marketing courses, looking ahead to a career in business. At the suggestion of his brother, who was also majoring in business, Stark signed up for a course called “The Physics of Everyday Life” to fulfill the physical sciences requirement for his degree. He never imagined what would happen next.

“The class was all about the physics behind everyday things like frisbees, CD players and cellphones. I was enthralled, and I just fell in love with physics,” he recalled. “I was learning about the world in a way that I never experienced before.”

Stark immediately changed his major to physics and never looked back. His very first undergraduate physics class—and later, that memorable lecture on exoplanets—set Stark’s course toward the stars. In fall 2004, he began his Ph.D. in physics at the University of Maryland.

“What really appealed to me was that Maryland’s physics department was so flexible with what their students researched, like biophysics and chaos theory and astronomy, which is what I ended up doing,” he said.

For Stark, UMD’s proximity to major research centers in the D.C. area, including NASA’s Goddard Space Flight Center, was ideal. 

“I could literally drive 10 minutes to NASA and chat with people there at lunch to see if they had a research project that they would want me to work on,” Stark recalled. “I found my first opportunity to research exoplanets at NASA by doing just that.”

Gamma rays and debris disks

After his first summer at NASA working on the Fermi Gamma-ray Space Telescope, Stark started working with Mark Kuchner, an expert on debris disks, the hazy dust clouds generated by asteroids and comets around other stars. At Kuchner’s suggestion, Stark applied for—and received—a NASA fellowship that funded three years of his Ph.D. research. For Stark, graduate school provided a world of opportunities, not just in research but in academics as well. 

“There’s some level of knowledge from the traditional academics that you’re taught in grad school that sticks with you for the rest of your career,” he explained. “I don’t know that a day goes by that some aspect of orbital mechanics or quantum mechanics doesn’t enter into my thoughts.” 

After earning his Ph.D. in 2010, Stark moved on to a postdoctoral position at the Carnegie Institution of Washington’s Department of Terrestrial Magnetism and spent three more years studying debris disks around distant stars. Three years later, he returned to NASA Goddard as a postdoc working with Aki Roberge, a research astrophysicist in the Exoplanets and Stellar Astrophysics Lab.

“I had been a theorist and an observational astronomer and when I started working with her, I said, ‘I’ve been working in this field for seven or eight years now I really want to get into mission design work,’” Stark explained. “And she said, ‘Have I got a project for you!’”

At the time, Roberge was studying a future telescope concept that would detect and image exoplanets. To determine what kind of telescope and other instruments would be needed, she had to develop a tool that could predict how many exoplanets the mission might discover. 

“We talked through how we would develop this tool and it turned out that everything I needed to do that project, I had the pieces already,” Stark recalled. “Forty-eight hours later, after reading through published papers and a lot of coding, I came back to her with a functioning skeletal structure of how this would work, and I think it hit both of us that we were onto something big.”

On a mission: the James Webb Space Telescope and Beyond

Together, Stark, Roberge and their colleagues developed a mission optimization tool that’s still being used by NASA today and Stark moved full steam into mission design. By 2015, he’d been hired as an associate scientist at the Space Telescope Science Institute in Baltimore, where he helped guide the design of future space telescopes and worked on the JWST, a huge NASA project that was still years away from launch.

“I was part of the team that prepared to align the mirrors of JWST after launch,” he explained. “Those golden hexagons, they all have to be aligned to within a fraction of a micron to work like one large mirror. The alignment is an amazing process, to be able to move around and shape a mirror segment more than a meter in size with such precision.”

Stark returned to NASA in 2020, taking on a new role as deputy integration test and commissioning project scientist for JWST, which launched in December 2021 and is now orbiting the sun on its journey of discovery.

“On a day-to-day basis, we’re tracking the performance of the telescope and instruments, and making sure that all the information we need is available to understand how the decisions we make impact science as we go,” Stark explained. “Working on this mission is thrilling, it’s stressful. More than anything, it’s humbling. It takes thousands of talented people to put something like this together.”

Stark is all about putting things together, and not just space missions. After years of doing construction projects with his parents as a kid, he still has a passion for building things at home in his spare time. No project is too big or too complicated.

“At this point, it’s an obsession. Anything that I can build is fair game. Honestly, that may be why I ended up in the position I’m in at NASA,” he mused. “I think there’s an aspect of designing future space missions that helps satisfy my need to build.”

From Stark’s Ph.D. studies to his current work on the Webb, every research project and every NASA mission have brought him closer to the dream he’s had since his very first day at UMD.

“My goal is to help launch a mission that has the chance of finding another planet that looks like Earth, and maybe even has biosignature gases that could be indicative of simple life,” Stark explained.

Stark believes that mission will soon be a reality. And he can’t wait to be part of it.

“We have so many exciting missions coming up that get at fundamental questions that humans have been asking themselves for millennia. We’re going to fundamentally transform our understanding of our place in the universe,” he said. “The next few decades of astronomy is really going to knock your socks off.”

Written by Leslie Miller

Growing into a Physicist at UMD

Physics can sometimes come across as the business of cold, calculating geniuses. But it can often be joyful, fun, competitive, engaging and more. Physicists are normal people and each of them has a unique and evolving relationship with their discipline. 

University of Maryland physics graduate student Michael Winer has had a relationship with physics—and physics at UMD in particular—since he was a kid. He first came to UMD as a high school student pursuing his competitive spirit when physics was a fun challenge. Then over time, physics became something more nuanced for him. Now, he has returned to UMD to pursue physics as a career and is also helping introduce the joys of physics to a new generation of bright young minds.

As a kid growing up in Maryland, Winer didn’t have an innate passion for physics. But he did have mathematical talent and a competitive streak. Before getting into physics, he started participating in math competitions when a family friend roped him into a middle school math competition.Michael Winer. Credit: Jess WinerMichael Winer. Credit: Jess Winer

“It was the best thing I've ever been badgered into,” Winer said. “I really liked it, but unfortunately I was not the best at math. So I had to sort of differentiate myself if you will and become the physics guy.”

Winer’s math skills led him to attend Montgomery Blair High School in Silver Spring, Maryland, which has a magnet program that offers accelerated courses in science, mathematics and computer science. There, he got his first taste of physics competitions. 

The tests that make up the U.S. Physics Olympiad were the most challenging Winer had ever taken, but his success on the tests in 10th grade—and then again in 11th grade—brought him to nearby UMD where he met several other promising young physics students from across the country. Each year (excepting virtual camps due to COVID-19) UMD hosts students at a training camp where they study physics and have a chance to make the U.S. International Physics Olympiad (IPhO) team.

“In 10th grade, I was really just happy to be there, and it was probably one of the best weeks of my life,” Winer said. “I was just enjoying basking in the glow of all these brilliant people and having all these interesting discussions and learning all these things. And then in 11th grade, I was much more focused on being one of the brightest kids there, making International Physics Olympiad, and then trying to get a gold medal at the International Physics Olympiad.”

In 10th grade, he also took the online course Exploring Quantum Physics with Victor Galitski, a Chesapeake Chair Professor of Theoretical Physics in the Department of Physics at UMD and a Fellow of the Joint Quantum Institute. Thanks to his positive experience with those two opportunities, Winer ended up reaching out to Galitski and arranging to work on a research project under his mentorship.

He studied how phonons—the quantum particle of sound—interact with electrons, a topic that is essential to understanding what makes superconductors work. That research experience was a radically new experience for Winer. 

He said that he likes to warn young people that research is a completely different beast from what they might be used to from homework or student competitions. 

“There are all sorts of differences,” Winer said. “Maybe you'll be able to solve this in two hours, maybe this will take 200 years, no one knows. And that's a lot of ambiguity, you don't know what you need to know, and you are not just allowed to—but almost always sort of required to—change the question as you're going. It's a completely different experience.” 

That early experience provided inspiration, and by working alongside graduate students, he got a glimpse into the future he is now living.

“By far the most valuable thing was not actually the research but sitting in a room full of grad students,” Winer said. “Sitting in a room with grad students, I think, gives you an insight into academia that just doing physics doesn't. I think you would expect it to sort of destroy the romanticized version I had in my head, but it did not. In fact, to this day, watching other people do physics is very motivating to me and reminds me how much I love doing physics.”

After this first experience with physics research, his passion for physics started yielding tangible rewards. In his sophomore year, he earned a silver medal at IPhO. And then after another summer working with Galitski, he won a first-place medal and $150,000 in the Intel Science Talent Search as a high school senior. 

“Both of those were very, very happy for me,” Winer said. “I did not think I would do well at the Intel contest and was wrong about that. What's interesting is I cared so much about Physics Olympiad. I spent years and years and years dreaming about Physics Olympiad whereas this research prize really just fell in my lap. Like, at no point in my life until it was announced that I had won did I think I would win.” 

After graduating high school and studying physics at MIT, Winer has returned to UMD as a graduate student to tackle much more substantial research. He is working on theories that describe some of the complex physics that play out inside of materials. Working under the mentorship of Galitski and Brian Swingle, an adjunct assistant professor of physics at UMD who is also an assistant professor at Brandeis University, Winer is studying spectral statistics—the distinctive signature that the energy levels of quantum objects collectively imprint on observable properties—in chaotic quantum systems. While it takes much longer to solve the problems he is tackling now, he said he still finds the same joy in learning new physics as he did in his first research experience and studying for the IPhO.

At UMD, Winer has helped mentor two Montgomery Blair students. He said that in addition to helping the students, these experiences have helped him understand his relationship with his own advisors by being on the other side of the table.

He has also given back to the IPhO program by being a coach who both helps write the tests used to select participants and also mentors the selected students. 

Winer said that while his participation as a student in the IPhO was probably helpful in getting to his current position, he thinks that an important part of the event is that it gives kids an opportunity to have fun. 

“Like a sailing club doesn't, you know, justify itself as creating passion for the all-important sailing industry, right?” Winer said. “They just say, ‘The kids are having fun. Let's help some kids have fun.’ And I think we can't forget that. Like, I was a kid, I had a lot of fun. It's good when kids have fun.”

Winer’s advice to any high school students considering studying physics is to try participating in the Physics Olympiad and, if possible, to look for research opportunities with professional physicists.

“You hopefully will discover you like it or at least have the potential to like it,” Winer said. “Then you will grow as a scientist over the course of that and over the course of your college research, and over the course of your grad school research.”

Story by Bailey Bedford

Related news stories: https://www.washingtonpost.com/local/education/montgomery-physics-phenom-tried-not-to-faint-as-he-won-national-award/2015/03/15/550d9bc4-c7e4-11e4-b2a1-bed1aaea2816_story.html