Bennewitz Receives DOE Fellowship

Elizabeth Bennewitz, a first-year physics graduate student, has received a Department of Energy Computational Science Graduate Fellowship(link is external). Bennewitz is one of 33 recipients in 2022—the largest number of students this program has ever selected in a year.

The fellowships provide financial support, including tuition and a stipend, to each fellow for up to four years of their education. Additionally, Bennewitz and the other recipients will gain practical experience working in a DOE laboratory for three months.

“I am very honored to receive this fellowship and am grateful for the freedom it gives me to explore my interests in quantum information and computing,” Bennewitz says. “I'm also very thankElizabeth Bennewitz (credit:  Dan Spencer)Elizabeth Bennewitz (credit: Dan Spencer)ful for all the support and guidance I received from my professors and peers along the way at Bowdoin College, Perimeter(link is external) and here at Maryland.”

The fellowship is funded by the DOE's Office of Science(link is external) and the National Nuclear Security Administration's Office of Defense Programs(link is external) in order to train future leaders in the field of computational science.

“[The] Office of Science is proud to support the training of a diverse and accomplished group of students to become leaders among the next generation of computational scientists,” says Barbara Helland, DOE Associate Director of Science for Advanced Scientific Computing Research, in a press release. “As evidenced by the success of the current CSGF alumni, the new fellows’ research will advance efforts in a wide range of science and engineering topics that benefit Administration priorities and the American people.”

Bennewitz is working with Joint Quantum Institute and Joint Center for Quantum Information and Computer Science (QuICS)  Fellow Alexey Gorshkov. She has chosen to research large collections of interacting quantum particles—called many-body quantum systems. The physics of quantum interactions is an area of cutting-edge research and is important to quantum computer technologies. Many-body quantum interactions can also be used to develop simulations to explore challenging problems in materials science and chemistry.

“In my research, I look forward to using high-performance computing techniques to further our understanding of quantum systems as well as studying the high-performance computing capabilities of quantum systems themselves,” Bennewitz says. 

In her first year as a graduate student, Bennewitz has started exploring ways that quantum simulators might help researchers understand the interactions that are responsible for holding particles together to form the nuclei that are the cores of atoms.

“Echoing my thoughts from when Elizabeth was named a finalist for the Hertz fellowship, I'm again very happy for Elizabeth, and I'm again excited and honored that she chose to work with my group,” Gorshkov says.

Original story by Bailey Bedford:

Ott Elected to National Academy of Sciences

Distinguished University Professor Edward Ott has been elected to the 2022 class of the National Academy of Sciences, one of 120 members and 30 international members recognized for their exceptional and continuing achievements in original research. Richard Walker from the Department of Geology was also chosen.  

“I am thrilled that Dr. Ott and Dr. Walker have been elected to the National Academy of Sciences,” said Amitabh Varshney, Dean of the  College of Computer, Mathematical, and Natural Sciences (CMNS). “They are world-renowned scholars and leaders in their fields. This honor is richly deserved, and we are proud to have them as colleagues here at Maryland."Ed Ott  Ed Ott

Their election brings the number of CMNS faculty members in the National Academy of Sciences to 18.

Ott holds appointments in physics, the Department of Electrical and Computer Engineering, and the Institute for Research in Electronics and Applied Physics. He has spent his career conducting research in areas including the basic theory and applications of nonlinear dynamics, wave chaos, control of chaos, fractal basin boundaries, dynamics of large interconnected networks, chaotic dynamics of fluids, models of brain dynamics and learning, and weather prediction.  

Of his NAS election, he said, "I feel greatly honored by this recognition of my work, and also regard this as a recognition of the important role that the general field in which I have mostly worked—nonlinear dynamics and chaos—is now playing in science and technology research.”

Ott was nominated as a foreign member of the Academia Europaea in 2020 and is a fellow of the IEEE, American Physical Society, Society for Industrial and Applied Mathematics and World Innovation Foundation. He received the A. James Clark School of Engineering Outstanding Faculty Research Award in 2005.


Original story from CMNS:


Lathrop and Colleagues Honored for Invention

Professor Daniel Lathrop, geology Associate Professor Vedran Lekić and doctoral student Heidi Myers were honored with the InfoDean Chang, Dan Lathrop, Heidi Myers, Mark Sullivan, Ken Porter and Greg Ball. Photo by Sage Levy.Dean Chang, Dan Lathrop, Heidi Myers, Mark Sullivan, Ken Porter and Greg Ball. Photo by Sage Levy.rmation Sciences Invention of the Year award at an at Innovate Maryland ceremony on May 3, 2022. 

The Invention of the Year Awards have celebrated innovative campus research since 1987. In that time, 108 inventions have been awarded the high distinction, selected for their technical merit, improvements to existing technology, commercial potential and overall benefit to society.

Beginning in 2016, the Innovate Maryland platform was established to form a series of programs bringing together various departments at the University of Maryland supporting innovation and entrepreneurship.

Lathrop, Lekić and Myers are combining a variety of sensors with geomapping as a means of finding the estimated 100 million unexploded landmines and other explosive dangers that continue to plague conflict zones long after overt hostilities have ceased. Their work is further described here:


Rockafellow, Yancey Receive NSF Fellowships

Ela Rockafellow and Colin Yancey were among 22 current students and recent alumni of the University of Maryland to receive prestigious National Science Foundation (NSF) Graduate Research Fellowships, which recognize outstanding graduate students in science, technology, engineering, and mathematics. Fourteen of these recipients were from the College of Computer, Mathematical, and Natural Sciences (CMNS). 

Rockafellow, a senior physics major and co-president of the UMD chapter of the Society of Physics Students, received a Goldwater Scholarship last year. Yancey, who graduated in 2021 with degrees in physics and biological sciences, is now a chemical and biomolecular engineering doctoral student at Johns Hopkins University.

CMNS graduate student fellowship recipients:

  • Joshua Davis, computer science graduate student
  • Ashley Hanna, geology graduate student
  • Katya Leidig, astronomy graduate student
  • James Mullen, computer science graduate student
  • Joel Rajakumar, computer science graduate student
  • Max Springer, applied mathematics & statistics, and scientific computation graduate student

CMNS undergraduate student fellowship recipients:

  • Steven Jin, mathematics major
  • Naveen Raman, computer science and mathematics double major
  • Ela Rockafellow, physics major
  • Abigail Svoysky, biochemistry, biological sciences, and Russian language and literature triple-degree student

CMNS alumni fellowship recipients:

  • Ethan Cheng (BS. ’21, biological sciences; B.S. ’21, computer science)
  • Brandon Johnston (B.S. ’21, chemistry)
  • Savannah Speir (B.S. ’18, biological sciences)
  • Colin Yancey (B.S. ’21, physics; B.S. ’21, biological sciences) 

NSF fellows receive three years of support, including a $34,000 annual stipend, a $12,000 cost-of-education allowance for tuition and fees and access to opportunities for professional development available.

The NSF Graduate Research Fellowship Program helps ensure the vitality of the human resource base of science and engineering in the United States and reinforces its diversity. The program recognizes and supports outstanding graduate students in NSF-supported science, technology, engineering, and mathematics disciplines who are pursuing research-based master’s and doctoral degrees at accredited U.S. institutions.

Since 1952, NSF has funded more than 60,000 Graduate Research Fellowships out of more than 500,000 applicants. At least 42 fellows have gone on to become Nobel laureates and more than 450 have become members of the National Academy of Sciences.

Original story by Abby Robinson:

Patrick Kim Named Goldwater Scholar

Patrick Kim, a junior physics and electrical engineering double-degree student, is one of three UMD students to have been awarded 2022 scholarships by the Barry Goldwater Scholarship and Excellence in Education Foundation, which encourages students to pursue advanced study and research careers in the sciences, engineering and mathematics.  Patrick Kim. Photo courtesy of same.Patrick Kim. Photo courtesy of same.

Over the last decade, UMD’s nominations yielded 35 scholarships—the second-most in the nation behind Stanford University. The Goldwater Foundation has honored 76 UMD winners and five honorable mentions since the program’s first award was given in 1989. In the last decade, 15 physics students have received Goldwater recognition: Kim, Ela Rockafellow, Scott Moroch, John Martyn, Nicholas Poniatowski, Mark Zic, Paul Neves, Christopher Bambic, Eliot Fenton, Prayaag Venkat, Nathan Ng, Geoffrey Ji, Stephen Randall and Noah Roth Mandell. 

“Our Goldwater Scholars are conducting research on the leading edge of their disciplines—engineering new clean energy solutions, using algorithms to optimize the distribution of limited resources in contact tracing or access to vaccines, and designing new gene-based diagnostics and therapies against aggressive cancers. Each of them is on a trajectory to make major research contributions that have societal impact,” said Robert Infantino, associate dean of undergraduate education in the College of Computer, Mathematical, and Natural Sciences. Infantino has led UMD’s Goldwater Scholarship nominating process since 2001.

Kim, a member of the University Honors program and President’s Scholarship recipient, is contributing to the quest for fusion energy—a process that forces atoms together under great heat and could mean an almost limitless supply of clean energy if successful. 

Kim began his first research project at UMD with Physics Professor William Dorland in 2017—two years before he became a college freshman. Now, Kim is working with Dorland to optimize fusion reactors to reduce their turbulent transport, which would otherwise greatly limit their efficiency and prevent net fusion power gain.

“Patrick is bright, resourceful, tenacious and curious,” Dorland said. “He is able to teach himself fast enough and thoroughly enough to have produced new results, which he published in a refereed journal and presented at the annual American Physical Society conference for the Division of Plasma Physics.”

Kim also conducts research at the Princeton Plasma Physics Laboratory (PPPL), where he studies reduced plasma models that can evaluate the plasma’s nonlinear macroscopic stability and dynamical properties more rapidly. He is co-author of a journal article submitted on this work. This summer, he plans to continue working at PPPL to develop improved optimization algorithms for fusion reactors.

After graduation, Kim plans to pursue a Ph.D., become a plasma physicist and help develop the first commercial nuclear fusion reactors that provide power to the electrical grid.

Other UMD winners this year were George Li, a sophomore computer science and mathematics double-degree student; and Kevin Tu, a junior biological sciences and economics double-degree student.  Goldwater Scholars receive one- or two-year scholarships that cover the cost of tuition, fees, books and room and board up to $7,500 per year.

Original story by Abby Robinson: