Ted Jacobson Named Distinguished University Professor

Ted Jacobson has been named a University of Maryland Distinguished University Professor. This designation is the campus’ highest academic honor, reserved for those whose scholarly achievements “have brought distinction to the University of Maryland.” He was cited for his highly innovative work in black hole thermodynamics, the nature of spacetime, and gravitational physics.

Jacobson received his Ph.D. at the University of Texas and held postdoctoral appointments at the Observatoire de Meudon and Institute Henri Poincaré, Paris; the University of California at Santa Barbara, and Brandeis University before joining UMD as an assistant professor in 1988. He has since held appointments at the University of Bern, the Kavli Institute for Theoretical Physics in Santa Barbara, the Université de Paris VII and the Institute d’Astrophysique in Paris, the University of Utrecht and the Schrödinger Institute of Vienna. Jacobson is a Distinguished Visiting Research Chair at the Perimeter Institute for Theoretical Physics, where he spent part of a 2013-14 sabbatical. He has been a Simons Distinguished Visiting Scholar at the Kavli Institute for Theoretical Physics in Santa Barbara, and in 2015 was co-coordinator of its six-month research program Quantum Gravity Foundations: UV to IR.

Jacobson is a member of the Maryland Center for Fundamental Physics and the Joint Space-Science Institute and a Fellow of the American Association for the Advancement of Science and of the American Physical Society. He was an invited speaker at Stephen Hawking’s 75th birthday conference in 2017, where he spoke on "Hawking radiation, infinite redshifts, and black hole analogues”.

He is a UMD Distinguished Scholar-Teacher, and he co-developed the College Park Scholars Program Science, Discovery and the Universe

His work has been featured in the lay press, including The Economist and Salon.com. He has written for Scientific American, including a cover story, “Echoes of Black Holes.  In 2010, the New York Times published a feature story on gravity and highlighted Jacobson’s 1995 paper “Thermodynamics of Spacetime: The Einstein Equation of State”.  This paper showed that Einstein's equation for the curvature of spacetime derives from thermodynamic principles applied to entanglement entropy of the quantum vacuum. The idea was inspired by black hole thermodynamics, one of his main research foci. His other research interests have included laboratory analogs of black holes, astroparticle and gravitational tests of relativity, and relativistic plasma physics.

Maissam Barkeshli Receives NSF CAREER Award

Ten University of Maryland faculty members earned Faculty Early Career Development Program (CAREER) awards from the National Science Foundation in the past fiscal year.

The five-year awards are the NSF’s most prestigious in support of junior faculty members who have the potential to serve as academic role models in research and education and lead advances in the mission of their department or organization.

Additions to the Physics Teaching Faculty

Hailu B. Gebremariam has accepted an appointment as a full-time lecturer.  He holds a bachelor's and a master's degree in physics from Addis Ababa University, an ICTPHailuHailu Gebremariam diploma in high energy physics from the Abdus Salam International Center for Theoretical Physics and a master's degree in physics from Syracuse University. He received his UMD doctorate in 2005 under Ted Einstein, with the thesis Terrace Width Distribution and First Passage Probabilities for Interacting Steps. Prior to accepting his new position, he was an assistant professor at Montgomery College and a part-time lecturer in the Department of Physics.

Matt sjpgMatt SeversonMatt Severson has accepted an appointment as a full-time lecturer. He holds bachelor’s degrees in atmospheric sciences and meteorology and in physics and mathematics from the University of South Alabama, and received his UMD Ph.D. in 2015 under Rabi Mohapatra, with the thesis Neutrino Mass and Proton Lifetime in a Realistic SUSY SO(10) Model.  Prior to accepting his new position, he was a part-time lecturer in the Department of Physics.

Inaugural Schmidt Science Fellow Joins CNAM

Wes Fuhrman, who recently completed his Ph.D. at Johns Hopkins University, has joined the Center for Nanophysics and Advanced Materials (CNAM) to conduct a one-year research program funded by the Schmidt Science Fellowship program. Fuhrman was one of 14 fellows chosen from 220 applicants for the first round of Schmidt funding.

Fuhrman received his bachelor’s degree at the University of California, Irvine, focusing on magnon decay dynamics and quantum game theory. At Hopkins, his interests turned to strongly interacting topological materials. This is also a focus area for CNAM researchers, making UMD an ideal place for Fuhrman to carry out a highly collaborative, multi-disciplinary research program focused on exploring the prospects of new technologies based on topological and correlated electron materials.

About the fellowship:

Schmidt Science Fellows, in partnership with the Rhodes Trust, aims to develop the next generation of science leaders to transcend disciplines, advance discovery, and solve the world’s most pressing problems. Schmidt Science Fellows was launched in 2017 by Eric and Wendy Schmidt and is a program of Schmidt Futures, delivered in partnership with the Rhodes Trust. The program has an initial commitment of at least $25m for the first three years.

The fellowship includes a $100,000 stipend and participation in a global meeting series. According to the program, fellowship recipients choose “leading laboratories at elite institutions that conduct exciting new research."

Davoudi Receives Ken Wilson Award

Assistant Professor Zohreh Davoudi has been honored with the 2018 Kenneth G. Wilson Award for Excellence in Lattice Field Theory during the 36th Annual International Symposium on Lattice Field Theory held July 22–28 at Michigan State University. Davoudi was cited for her fundamental contributions to lattice field theory in a finite volume that are essential for performing lattice simulations of complex systems.

The annual award is named after Nobel Laureate Ken Wilson (1936-2013), who founded lattice gauge theory in 1974, permitting such theories to be studied numerically using powerful computers. Established in 2011, the award recognizes outstanding lattice field theorists who are within seven years of completing the Ph.D., and consists of a modest monetary prize and an invitation to give a plenary talk at the next symposium on lattice field theory.

Davoudi’s significant contributions to formulating the path between quantities obtained in numerical simulations of lattice field theory in a finite spacetime and the physical observables have advanced the few-body frontier in lattice field theory. The cited work paved the road towards obtaining important quantities in particle and nuclear physics, such as two and three-body scattering amplitudes, bound-state properties, electromagnetic structure of hadrons and nuclei, coupled-channel scattering and reaction rates.

Davoudi received her Ph.D. in theoretical nuclear physics at the University of Washington, and held a postdoctoral position at the Center for Theoretical Physics at the Massachusetts Institute of Technology before joining UMD in 2017. She studies how complex systems of hadrons and nuclei emerge from fundamental interactions of nature using a combination of analytical and computational methods.

zohreh receiving Ken Wilson Lattice AwardPhoto courtesy of Lattice 2018. Christine Davies, University of Glasgow (left) Zohreh Davoudi, University of Maryland (right).