Kasra Sardashti Brings Summer Program to UMD to Promote Diversity in Quantum Research

Quantum research involves many challenges, from building tiny intricate devices and interpreting the unintuitive microscopic world to grappling with unwieldy calculations. The community of quantum researchers also has to contend with societal issues, like the long-established racial and gender disparities in physics and trends that overhype or mystify quantum technologies. 

As a quantum researcher, Kasra Sardashti, who joined the UMD Department of Physics in March as an assistant research professor and a principal investigator at the Laboratory for Physical Sciences (LPS), takes a practical, hands-on approach to problem solving. His research focuses on removing bottlenecks that limit the development of practical quantum devices. He’s also tackling another problem he believes is holding back quantum research: a lack of diversity in the researchers joining the field.

“I have a strong commitment to promoting diversity in STEM,” Sardashti said. “I've always found it surprising that there is such a significant underrepresentation of women and minorities in physics and engineering.”

According to data through 2021 from the American Physics Society, the American Institute of Physics and the Integrated Postsecondary Education Data System, women received fewer than 22% of physics doctoral degrees annually in the U.S. And the five-year average of data through 2021 shows that while communities marginalized by race or ethnicity made up about 37% of the U.S. college-age population, members of those communities earned only 15% of the physics bachelor’s degrees and 8% of the doctoral degrees and held only 5% of physics faculty position.

Sardashti has seen colleagues from diverse backgrounds bring valuable new ideas and perspectives to the quantum research community—a field that is steadily growing. He wants to ensure it has a robust, diverse workforce to support its growing needs, and he doesn’t believe that getting more people into physics or math classes will be sufficient to get enough people working in the field. Getting people interested in quantum research often requires getting them past a discomfort with quantum physics, which Sardashti calls “quantumphobia.” 

Sardashti believes the most effective way to counter quantumphobia is letting students perform experiments themselves so they can see the practical side of the field and have fun getting their hands on real projects. He decided to apply that approach in his efforts to attract students from underrepresented groups into the field. Last year, he and his colleagues started the Summer Quantum Engineering Internship Program (SQEIP) to give diverse groups of undergraduate students the chance to get their hands on equipment in real quantum research labs and gain practical experience with quantum engineering.

When Sardashti moved to UMD, SQEIP came with him. The facilities and researchers at the LPS Qubit Collaboratory and UMD’s Quantum Materials Center (QMC) created a new home for the program, and this summer they introduced 15 students to quantum research. 

“I think that the part that drew me to science and engineering was actually doing things with my hands and getting a hands-on experience—experiential learning,” Sardashti said. “I think we should provide that to students. And this is how we jump started the program.”

Sardashti’s own path to quantum physics started from a practical, hands-on background. As a kid, he enjoyed working on things, like fixing computers and working on the wiring in the walls of his family’s home in Tehran.

Pursuing his practical interest, he attended Tehran Polytechnic where he studied materials engineering. Physics classes were required for the major, and the quantum physics ideas from the classes ensnared his imagination. So, he added extra physics courses to his schedule. 

He continued studying materials science while pursuing his master’s degree at the University of Erlangen in Germany and his doctoral degree at the University of California, San Diego. During this time, his interest in physics attracted him to the intersection of material engineering and applied physics, and he studied the materials that make solar panels function. After that, he dove into quantum research as a postdoctoral researcher at the New York University Center for Quantum Phenomena and then as an assistant physics professor at Clemson University.

Now, Sardashti specializes in improving quantum devices and enabling new uses for the technology. His work includes studying how superconductor fabrication processes affect the resulting properties, designing voltage-tunable superconducting quantum devices, and proposing experiments to demonstrate non-Abelian statistics using quantum devices

As Sardashti carried out his research, he kept noticing a lack of diversity around him and began searching for a way to address the issue. He decided he needed help to reach students who are underserved by the current system, so he began contacting professors at historically Black colleges and universities (HBCUs) looking for someone interested in working with him. After several dead ends, John Yi, a chemistry professor at Winston-Salem State University (WSSU) responded, and they started collaborating. 

“A lot of it was John's drive,” Sardashti said. “It's not that easy to go into an HBCU, pull a professor away from their four-course semester schedule, and be like, ‘Hey, can you just do something on the side?’ But he was willing to do it. He really wanted to get engaged. He's really passionate about training his students.”

Together Sardashti and Yi obtained funding from the National Science Foundation and the U.S. Department of Energy and launched SQEIP to give students, particularly those from underrepresented backgrounds, firsthand quantum engineering experience. The program gathered its first group of 11 students at Clemson University in summer 2023.

Yi is instrumental in running the program and takes a lead role in recruiting and selecting students from underrepresented backgrounds from both his own university and across the country. 

SQEIP hit a road bump when Sardashti joined UMD in March, just a couple of months before the program’s second summer. Even though it was a tight schedule, Sardashti and Yi decided to relocate the program and take advantage of the experts and labs at UMD. In just a couple of months, they had to get local scientists and faculty to buy into the effort and agree to share their time, expertise and resources with visiting students. They also had to arrange student financial support, travel and housing. Fortunately, they connected with UMD Physics Professor and QMC Director Johnpierre Paglione, who helped run the program, recruit other colleagues and arrange for the students to work in QMC labs. 

“After learning about SQEIP, I was delighted to participate by incorporating quantum materials training into the program,” Paglione said. “This was quite natural for us, since we run a condensed version each year as part of our Fundamentals of Quantum Materials Winter School, and QMC has the facilities to accommodate such a group.”

This year SQEIP included five students from WSSU and 10 students from nine other universities. Once the students arrived at UMD in May, they were split into two groups, which each spent three weeks at either QMC or LPS before swapping for another three weeks. 

At QMC, the students explored how materials used in quantum devices are created and studied. For example, they used ultra-high-temperature furnaces and arc melting station (which can reach temperatures up to about 2,000 F and 3,600 F, respectively) to make their own crystal materials by carefully combining chemicals they had measured and mixed together. They were also trained to use techniques, like X-ray diffraction and X-ray fluorescence, to observe the structures of materials they had fabricated. They also measured the physical and magnetic properties of materials in very high magnetic fields and ultra-low temperatures.

“It’s really amazing to see students come into QMC without any experience and learn to synthesize novel materials like topological insulators and superconductors, all in a matter of a few weeks!” Paglione said. “Growing crystals is one of those things that’s fun and exciting, while also crucial to helping nurture a deep appreciation for the materials that will form the next generation of quantum devices.”

At LPS the students tackled several projects that introduced them to the basics of quantum device research. For instance, they dipped electric circuits into liquid nitrogen (which is below −321 F) to observe how the electrical conductivity changed with temperature. They then explored even colder temperatures using laboratory equipment, like a dilution refrigerator, which can produce temperatures less than a tenth of a degree above absolute zero. Extremely cold temperatures are often essential to getting quantum devices to function, and the students used the frigid conditions when measuring the properties of superconductors and microwave cavities, which play crucial roles in many quantum devices. 

“I think the most beneficial part of the program is just the ability to utilize the resources that QMC and LPS had that you probably wouldn't get at your run-of-the-mill university,” said Taylor Williams, an information technology major at WSSU who participated in the program this year. “Working hands-on with the dilution refrigerator—that surprised me, just because it's so expensive. So, I was thinking we would tour it and look around, but I didn't think we'd actually get to play with it and analyze data off of it.”

By exposing the students to quantum engineering techniques, the program not only lets them connect with the field of quantum research but also provides them with context on how jobs in other fields might interact with or support quantum engineering. For instance, if participants end up going into chemistry and are producing new materials, their experiences during the program will provide insights into how those materials might be used in quantum devices. 

“It's a great learning experience and a great way to start off with a lot of different options and different directions for where you want to go,” said Brenan Palazzolo, a physics major from Clemson University who participated in the program this year. “Any STEM major should apply. It was really an amazing program to have such a broad spectrum of students.”

The program wasn’t all work. Projects weren’t scheduled on the weekends, so participants had a chance to explore the area and see tourist sites like the White House, Smithsonian museums and the Lincoln Memorial in nearby Washington, D.C. Students also found time to have fun in the labs, like a group that used a microscope to get an up-close look at colorful flecks in rocks they had bought at a Smithsonian gift shop. 

“I liked that we were really close to D.C.,” Palazzolo said. “It was kind of fun on the weekends and also really informative during the week. It wasn't just one thing that I was learning. I was learning the ins and outs of a lot of different parts of quantum research and the quantum processes for materials.”

Even after students return home, the program continues to provide advice to the participants and support their career progress. Alumni can request financial support to attend academic conferences where they can practice communicating about research, connect with scientists from other institutions, and get a sense of the broader opportunities available in the field. Alumni are also invited to apply for the following year’s program so that they can tackle more advanced projects using the techniques they learned the previous year.

“Johnpierre, myself, our leadership team at LPS, we actually believe in this,” Sardashti said. “I think this is a very good step—an important step—for people to get drawn to the field.”

Story by Bailey Bedford

UMD Adds Undergraduate Physics Specializations in Biophysics and Applied Physics

The University of Maryland’s Department of Physics added two new specializations to its bachelor’s degree program this fall: biophysics and applied physics. These augment the existing primary physics major designed to prepare students for graduate studies in physics and the physics education specialization designed for students obtaining a teaching certificate through the College of Education.

“The American Institute of Physics and the American Physical Society have recommended that undergraduate physics programs be diversified to prepare students for a variety of career paths, including those that extend beyond graduate study in physics,” said Carter Hall, a professor and the associate chair of undergraduate education for the Department of Physics. “The biophysics and applied physics specializations were developed with these recommendations in mind and based upon input from our students and faculty.”

The biophysics specialization is designed for students interested in exploring the intersection of physics and biology. It serves those who aim to study biophysics in graduate school and those who seek a strong physics foundation while preparing for the MCAT and medical school. This specialization provides a comprehensive understanding of biological and physical systems, offering insights into the physical principles underlying biological processes. Students will gain valuable analytical and problem-solving skills, preparing them for advanced studies in biophysics or medical research or a career in the health sciences.

The applied physics specialization is designed for students who aim to enter the workforce in technical or scientific roles immediately after graduation or those who plan to pursue further studies in applied physics at the graduate level. This specialization focuses on practical applications of physics principles, equipping students with hands-on experience and problem-solving skills relevant to technology and research industries. By blending theoretical knowledge with practical training, the applied physics specialization prepares students to tackle real-world challenges and innovate in their chosen fields.

At UMD, the nearly 300 physics majors benefit from small class sizes, outstanding teachers and talented classmates. In addition, they are encouraged to participate in cutting-edge research with the department’s internationally recognized faculty members.

“Through participation in research projects, our students learn what it takes to conduct world-class scientific research,” Hall added. “Whether students decide to continue to study physics in graduate school or work in fields such as engineering, software development, law, business or education, a bachelor's degree in physics from Maryland provides an excellent foundation.”

Exploring the Mechanics of Life’s Tiniest Machines

Maria Mukhina hopes to shine a new light on how the intricate machinery of life works at its most fundamental level. 

With a background in physics, optics and nanotechnology, the assistant professor of physics who joined the University of Maryland in January 2024 studies how cells use mechanical energy to organize themselves and carry out their jobs—both when they’re healthy and when they’re not. Mukhina develops nanoscale tools to visualize and quantify the mechanical forces within cell nuclei. Her work focuses on the mechanical information processing in DNA and chromosomes, which could lead to a better understanding of gene expression, disease mechanisms and how complex structures like tissues form. Maria MukhinaMaria Mukhina

“Physics is just as important for controlling cell physiology as chemicals and genes,” Mukhina explained. “Yet, we know very little about the mechanics that emerge when millions of molecules come together in larger dynamic structures like the genome or cytoskeleton. This is due to the lack of appropriate tools that would allow us to read out the properties of these mechanics—and that is where my work comes in.”

Physics Chair Steven Rolston said Mukhina’s research will provide UMD students with new perspectives on how physics can be applied to many other disciplines, from biology to materials science. 

“Dr. Mukhina’s training in the optical physics of nanocrystals gives her unique insights in applying techniques based in physics to study genome mechanobiology—the interplay of mechanical forces with biological function,” Rolston said. “We are delighted to have her join our biological physics effort in the department.”

Using tiny tools to solve big mysteries

Growing up in Russia, Mukhina had no idea she would eventually pursue an academic career in physics. Raised in a family of musicians, engineers and doctors, she had no lab or research experience until she entered ITMO University in St. Petersburg as an undergraduate studying laser physics. 

“I was in third year of my undergraduate education when I finally realized that I could be working in a research lab looking for answers to a real scientific question,” she recalled. “Ever since then, I’ve been in love with experimental work in the lab. Nothing can compare with sitting there in the dark, doing some microscopy work and knowing something that no one else under the sun knows—it’s like pure magic!”

Mukhina brought that sense of wonder to her graduate studies at ITMO University, earning a master’s degree in photonics and optical computer science and a Ph.D. in optics. Her doctoral research focused on the new optical properties arising in spatially ordered ensembles of anisotropic nanocrystals, tiny semiconductor particles with unique properties that can be controlled by changing the size and shape of a nanocrystal. 

After that, Mukhina wanted to explore more biological applications for this rapidly evolving technology, so she joined the lab of Harvard University cell biologist Nancy Kleckner as a postdoc.

“The Kleckner lab introduced me to the world of cellular mechanics,” Mukhina said. “We viewed chromosomes as mechanical objects rather than carriers of genetic information. This perspective led me to a whole new world of questions about how physical forces can shape the behavior of cells. I was fascinated by the idea that one can use nanotools to do work in a living cell, to change how it performs its functions, and also how this branch of research draws so heavily from physics, cell biology, chemistry and more.”

The interdisciplinary nature of that work led Mukhina to look for research environments that could provide a space for both collaborative research and innovative thinking. She found the perfect new home for her research at UMD.   

“I wanted to find a place where I could interact with very diverse faculty and resources,” Mukhina said. “And beyond the university, I am also close to many cutting-edge research hubs like the U.S. National Science Foundation and the National Institutes of Health. I’m very excited to join a group with such varied expertise.”

 Now, Mukhina’s biggest research challenge is to accurately measure nanoscopic forces without disrupting the delicate environment of living cells. Drawing on her background in physics and nanotechnology, she develops tiny probes that can be directly introduced into cells to map out the forces at work within them. 

One probe is based on a concept called “DNA origami”—a technique that uses complementarity of two DNA strands to fold them into specific shapes. Another probe relies on a phenomenon called mechanoluminescence, where mechanical stresses applied to a material cause it to emit light. Both tools are designed to respond to the minute mechanical forces generated by mammalian cells, allowing researchers to create very detailed 4D maps of the intracellular force fields, which, as the researchers hypothesize, are used by the cells to orchestrate changes across microns of space, a huge distance in the cell universe. 

“All of this requires very fast and gentle to the cells light microscopy, so I’m also currently building a custom microscopy setup that will allow me to measure fluorescence or mechanoluminescence in events that occur within milliseconds,” Mukhina said. 

Mukhina also sees potential long-term applications for her research in medicine and beyond.

“Understanding the mechanics of how cells divide and segregate DNA could provide insights into cancer development or help us learn how to restart regeneration of our heart muscle cells after birth,” she explained. “My goal is for my work to open new avenues into developing regenerative therapies—and to push the boundaries of what we know about these physical forces that shape life itself.”

High School Student Earns Accolades for Summer Research with Gorshkov Group

Jason Youm, a high school student who performed summer research with Alexey Gorshkov, an adjunct associate professor of physics at UMD, in 2023, placed in the top dozen competitors in the physics and astronomy category at the Regeneron International Science and Engineering Fair (ISEF). In the competition, Youm, who recently completed his junior year at Montgomery Blair High School in Silver Spring, Maryland, presented research he completed under the mentorship of Gorshkov and Joseph Iosue, a graduate student in physics at UMD.

The Regeneron ISEF brings together high school students from across the world who earn their spots by qualifying at local science fairs. In his project, Youm performed calculations to help researchers investigate how quantum computers can perform certain tasks significantly faster than their traditional counterparts.

“I'm truly, really thankful for the research opportunity,” Youm said. “I think it's honestly changed my life. It's truly an invaluable experience.”Jason YoumJason Youm

Youm had harbored an interest in quantum physics for the first couple of years of high school, and after finishing his first calculus class during his sophomore year, he decided to look for opportunities to explore the interest more deeply. 

“Kind of on a whim, in mid-May, I just emailed some professors at UMD, because I heard they had a good program in quantum physics,” Youm said. “I just asked like, ‘I'm interested in these fields. Would you be interested in having a student intern during the summer?’ And Alexey was kind enough to accept me into the group.”

Gorshkov first looked over the relevant experience in math and physics Youm shared in his email and then reached out to the other members of the group to ask if any of them had a suitable project.

One of those graduate students, Iosue, was particularly interested in mentoring someone since he knew firsthand how valuable such experiences can be. When he was an undergraduate at the Massachusetts Institute of Technology (MIT), he had spent a summer working in Gorshkov’s group.

“My time as an undergrad in Alexey’s group was a very good experience for me,” Iosue said. “It was the best research experience I had until I started my Ph.D. So, I wanted to do something similar for someone else.”

Iosue remembered a project from his early days as a graduate student that had a natural continuation. The group hadn’t followed up on the possibility yet, and he thought the remaining work might be a suitable project for a motivated high school student.

The project developed mathematical tools for studying quantum entanglement—a phenomenon where the evolving fates of quantum particles become inextricably linked. A collection of quantum states can have different amounts of quantum entanglement that are possible, and Iosue performed calculations that help quantify if the quantum entanglement values are tightly or loosely clumped together. Entanglement plays a central role in quantum computers, so it is likely to be a key ingredient in any proof that quantum computing’s advantage is real and that a cleverly designed program on a traditional computer can’t possibly compete. 

The calculations that Iosue had performed were only the first of a set that each provide slightly different insights about the entanglement of the analyzed states. Iosue suggested that Youm could perform the other calculations by using the previous work as a guide. Gorshkov agreed, and Youm ended up taking on the project.

“My hope was that the calculations would be similar—like the whole beginning to end process that we did would be similar,” Iosue said. “So, it seemed like a high school student wouldn't have to necessarily dive into too much scientific literature or dive into too much uncertainty. I was hoping there was a bit more of a straight path, but with research, it's not always what you expect.”

Early in the summer, the project hit a snag. Iosue suggested Youm begin with a scientific paper that provided equations that were the natural starting point for the new calculations. But as Youm worked, his results weren’t going anywhere. When the group dug deeper, they determined that the equations in the paper were incorrect, and they had to start over by deriving the initial equations themselves.

Eventually, Youm successfully worked through the math for an additional portion of the calculations, and he also used computer simulations to verify his results.

“In the middle of the project was a lot of coding, mathematical work, and trying to understand the physics processes behind all the math that I was doing,” Youm said. “I worked for around eight hours a day, just trying to progress in my work and deriving the necessary formulas and the theorems. So it was pretty intensive, but also I really enjoyed it.”

In Youm’s science fair project, titled “Measuring Quantum Entanglement Entropy in Gaussian Boson Sampling,” he presented the results and discussed their practical applications to quantum experiments. The calculations apply to Gaussian boson sampling experiments where several measurements collect a sample of results from a specific set of prepared quantum states. Quantum mechanics allows a sample to be designed so that it reflects very specific statistics, and many physicists believe that for many cases it can be prohibitively complex for any computer not exploiting quantum phenomena to create a sample with the correct statistics.

The calculations that Youm performed are not directly used in sampling experiments, but they are a potential tool for studying how entanglement relates to the complexity of the sampling task. Understanding entanglement could be central to definitively proving if a sampling experiment has truly achieved an unassailable quantum advantage.

After the summer, Youm continued to work with the group—scheduling meetings around his normal school schedule and assignments. During the school year, Youm took the lead on writing a paper about the results, which the group has posted on the arXiv preprint server

“I've had high school students working with my group in the past, but this was the first time we worked over the summer with a rising junior instead of a rising senior,” said Gorshkov. “Jason's performance was outstanding!”

This summer Youm is once again took on a research project, but this year he was at the 2024 Center for Excellence in Education Research Science Institute summer program at MIT, which accepts 100 high school students from around the world. 

“I am really thankful for Alexey, and the rest of the research group, because without them I wouldn't have been able to get any of these opportunities,” Youm said. “I owe all of this to them, and I just feel really happy and grateful.”

Written by Bailey Bedford

 

In addition to Gorshkov and Iosue, QuICS Hartree Postdoctoral Fellow Yuxin Wang and JQI graduate student Adam Ehrenberg also worked with Youm and are authors on the paper posted on the arXiv preprint server.

Edward "Joe" Redish, 1942 - 2024

Edward F. “Joe” Redish, a nuclear theorist who became a globally recognized expert in physics education research, died on August 24, 2024 at age 82. 

Upon earning his Ph.D. at MIT in 1968, Redish came to UMD on a fellowship in nuclear theory. He was hired as an assistant professor in 1970, continuing his work on the theory of reactions and the quantum few-body problem.

Over the next dozen years, technological advances made computers vastly more accessible, and Redish recognized their enormous potential for students grappling with difficult concepts and calculations.  Intending to develop useful tools, he accepted the position of department chair in 1982, and quickly launched the Maryland University Project in Physics and Educational Technology (M.U.P.P.E.T.). Among the results was M.U.P.P.E.T. Utilities, a software package with applications for graphing, simple animations and data management that allowed students to use computing for complex physics problems.

M.U.P.P.E.T. inspired broad interest in incorporating computing into physics instruction. The experience also heightened Redish’s interest in physics education. In 1992, he took a sabbatical at the University of Washington with Dr. Lillian McDermott, a leader in the field, and upon his return launched the Maryland Physics Education Research Group.  

Since its creation, the UMD PERG has graduated dozens of physics Ph.Ds. and trained several postdocs. Graduates include many tenured physics faculty, two American Physical Society (APS) fellows, and a president of the American Association of Physics Teachers (AAPT).

Among the group’s notable efforts was the Maryland Physics Expectations Survey (MPEX), which revealed a chasm between what students and professors thought was happening in introductory physics courses. This paper led to the development of similar surveys in physics and in other fields. Redish and the PERG became leaders in the development of a theoretical framework for Physics Education Research and in developing analytic tools for cognitive modeling of student thinking

In 2003, as part of The Physics Suite, a project unifying multiple active-learning materials with a new textbook, Redish wrote a guide to physics teaching, Teaching Physics with the Physics Suite. A December 2019 review in the UK's Institute of Physics’ education newsletter called it "perhaps the single best book available for a teacher to read who wants to get a deeper insight into teaching and learning in physics." It has been translated into Japanese and Farsi.

In response to his research findings, Redish overhauled Physics 121/122 (required for life science students) to focus on the development of higher-order scientific thinking skills, reconsidering each component and better integrating the labs, tutorials and homework assignments. To provide a more interactive experience, he introduced interactive lecture demonstrations and clickers, which provided real-time feedback to the instructor on what students were absorbing.

In 2010, Redish received funding from the Howard Hughes Medical Institute for the National Experiment in Undergraduate Science Education (NEXUS) and created Physics 131/132. This sequence was designed for students planning careers in medicine and bioscience, who will better understand chemical and biological processes with a solid foundation in physics. It is a core element of the multi-university, multi-million dollar National Science Foundation (NSF) project, The Living Physics Portal, a national web resource for organizing, evaluating, and sharing materials for physics classes for life science students.

His more than 100 published papers include three major articles in Physics Today, two of which were cover articles.. He was awarded $7.5 million in federal funding for Physics Education Research.

Redish was a UMD Distinguished Scholar-Teacher and a Fellow of both the American Association for the Advancement of Science and the APS.  He received a broad range of accolades, including the NSF Director's Distinguished Teaching Scholar Award in 2005.

For 12 years, he was the U.S. representative to the International Union of Pure and Applied Physics Commission on Physics Education (C14), and received its Education Medal in 2012. He was awarded the AAPT Oersted and Millikan medals and the University System of Maryland Board of Regents Award for Teaching. In 2015, he received the APS Excellence in Physics Education Award, "For leadership in the use of computers in physics education, applying cognitive research to improve student learning and critical thinking skills, tailoring physics instruction for nonphysicists, and guiding the field of physics education research through a period of significant growth."

He was a leader in helping building the Physics Education Research community, editing the first PER journal and organizing major conferences including the first on Computers in Physics Education (1988), a major international meeting on Physics Education (1996), and the first (and so far only) Fermi International Summer School on PER (2003).

Redish’s wife Ginny, daughter Deborah and son David all hold doctorates in science. In 2011, Joe and Ginny established the E.F. Redish Endowed Professorship in Science Education.  In 2019, they created the E.F. and J.C. Redish Maryland Promise Scholarship

In 2017, more than 150 colleagues and advisees gathered to honor Redish on his 75th birthday.   

More information is available here: https://www.sagelbloomfield.com/obituary/Edward-Redish#obituary