Physicists Show ‘Molecules’ Made of Light May Be Possible

It’s not lightsaber time, not yet. But a team including theoretical physicists from JQI and NIST has taken another step toward building objects out of photons, and the findings hint that weightless particles of light can be joined into a sort of “molecule” with its own peculiar force. Researchers show that two photons, depicted in this artist’s conception as waves (left and right), can be locked together at a short distance. Under certain conditions, the photons can form a state resembling a two-atom molecule, represented as the blue dumbbell shape at center.

The findings build on previous research that several team members contributed to before joining JQI and NIST. In 2013, collaborators from Harvard, Caltech and MIT found a way to bind two photons together so that one would sit right atop the other, superimposed as they travel. Their experimental demonstration was considered a breakthrough, because no one had ever constructed anything by combining individual photons—inspiring some to imagine that real-life lightsabers were just around the corner.

See more at: http://jqi.umd.edu/news/jqi-physicists-show-molecules-made-light-may-be-possible#sthash.FlERjh1d.dpuf

A New Litmus Test for Chaos?

Researchers from the University of Maryland have described a new definition of chaos that applies more broadly than previous definitions. This new definition is compact, can be easily approximated by numerical methods and works for a wide variety of chaotic systems. The discovery could one day help advance computer modeling across a wide variety of disciplines, from medicine to meteorology and beyond. The researchers present their new definition in the July 28, 2015 issue of the journal Chaos. Read More

Controlling Interactions Between Distant Qubits

A big part of the burgeoning science of quantum computation is reliably storing and processing information in the form of quantum bits, or qubits. One of the obstacles to this goal is the difficulty of preserving the fragile quantum condition of qubits against unwanted outside influence even as the qubits interact among themselves in a programmatic way. Read More