Beyond Higgs: The Search for New Particles That Could Solve Mysteries of the Universe

An elusive elementary particle called the Higgs boson is partly to thank for life as we know it. No other elementary particles in the early universe had mass until they interacted with a field associated with the Higgs boson, enabling the emergence of planets, stars and—billions of years later—us.

Despite its cosmic importance, scientists couldn’t prove the Higgs boson even existed until 2012, when they smashed protons together at the most powerful particle accelerator ever built: the Large Hadron Collider (LHC). A decade later, this massive machine, built in a tunnel beneath the France-Switzerland border, is up and running again after a series of upgrades. 

As the search for new particles starts anew, researchers like Assistant Professor of Physics Manuel Franco Sevilla find themselves wondering if they will discover anything beyond Higgs.UMD Assistant Professor of Physics Manuel Franco Sevilla is helping to upgrade the Large Hadron Collider (LHC) at CERN in Switzerland. In the above photo, he is shining a light on silicon sensors to measure whether their dark current increases—a sign that they are properly connected. Photo courtesy of Manuel Franco Sevilla.UMD Assistant Professor of Physics Manuel Franco Sevilla is helping to upgrade the Large Hadron Collider (LHC) at CERN in Switzerland. In the above photo, he is shining a light on silicon sensors to measure whether their dark current increases—a sign that they are properly connected. Photo courtesy of Manuel Franco Sevilla.

“It’s a tough question because particle physics is at a juncture,” said Franco Sevilla, who is working at the LHC this semester. “It’s possible that we are currently in what physicists call a ‘nightmare scenario,’ where we discovered the Higgs, but after that, there’s a big desert. According to this theory, we will not be able to find anything new with our current technology.”

This is the worst-case scenario, but not the only possible outcome. Some scientists say the LHC could make another discovery on par with the Higgs boson, potentially identifying new particles that explain the origin of dark matter or the mysterious lack of antimatter throughout the universe. Others say new colliders—more powerful and precise than their predecessors—must be built to bring the field into a new era.

There are no easy answers, but Franco Sevilla and several other faculty members in UMD’s Department of Physics are rising to the challenge. Some are working directly with the LHC and future collider proposals, while others are developing theories that could solve life’s biggest mysteries. All of them, in their own way, are advancing the ever-changing field of particle physics.

Looking For Beauty

As Franco Sevilla will tell you, there’s beauty all around—if you know where to look. He is one of the researchers who uses the LHC’s high-powered collisions to study a particle called the beauty quark—b quark for short. It’s one of the components of “flavor physics,” which observes the interactions between six “flavors,” or varieties, of elementary particles called quarks and leptons. 

Because these particles sometimes behave in unexpected ways, Franco Sevilla believes that flavor physics might lead to breakthroughs that justify future studies in this field—and possibly even the need for a new particle collider. 

“Some of the most promising things that will break the ‘nightmare scenario’ and allow us to find something are coming from flavor physics,” he said. “We still haven't fully discovered something new, but we have a number of hints, including the famous ‘b anomalies.’”

These anomalies are instances where the b quark decayed differently than predicted by the Standard Model, the prevailing theory of particle physics. This suggests that something might exist beyond this model—which, ever since the 1970s, has helped explain the fundamental particles and forces that shape our world.

Some mysteries remain, though. Physicists still don’t know the origin of dark matter—an enigmatic substance that exerts a gravitational force on visible matter—or why there’s so much matter and so little antimatter in the universe.

Sarah Eno, a UMD physics professor who has conducted research at particle accelerators around the world, including the LHC, said these answers will only come from collider experiments.Sarah Eno, a physics professor at UMD, sits atop a model of a Large Hadron Collider (LHC) dipole magnet at CERN about 10 years ago. At the time, she was participating in LHC experiments and frequently spent her summers at the lab in Switzerland. Credit: Meenakshi Narain.Sarah Eno, a physics professor at UMD, sits atop a model of a Large Hadron Collider (LHC) dipole magnet at CERN about 10 years ago. At the time, she was participating in LHC experiments and frequently spent her summers at the lab in Switzerland. Credit: Meenakshi Narain.
“What is the nature of dark matter? Nobody has any idea,” Eno said. “We know it interacts via gravity, but we don’t know whether it has any other kinds of interactions. And only an accelerator can tell us that.”

Better, Faster, Stronger

After the third (and current) run of the LHC ends, the collider’s accelerator will be upgraded in 2029 to “crank up the performance,” according to the European Organization for Nuclear Research (CERN), which houses the collider.

With the added benefit of stronger magnets and higher-intensity beams, this final round of experiments could be a game-changer. But once that ends, Eno said the LHC will have reached its limit in terms of energy output, lowering the odds of any new discoveries. The logical next step, she said, would be to construct a new collider capable of propelling the field of particle physics forward.

“The field is now trying to decide what the next machine is,” Eno said.

Around the globe, there are various proposals on the table. There is a significant push for another proton collider in the same vein as the LHC, except bigger and more powerful. Electron-positron colliders—both linear and circular in shape—have also been proposed in China, Japan and Switzerland.

Eno is one of the physicists leading the charge for the construction of an electron-positron collider at CERN. It would be the first stage of the proposed Future Circular Collider (FCC), which would be four times longer than the LHC. By the late 2050s, it would be upgraded to a proton collider, with an energy capacity roughly seven times that of the LHC. Eno, who was appointed one of the U.S. representatives for this project, said the electron-positron collider would allow physicists to study the Higgs boson with significantly higher precision.

“When an electron and positron annihilate, all their energy becomes new states of matter,” Eno said. “This means that when you’re trying to reconstruct the final state, you know the total energy of that final state. This allows you to do much more precise measurements.”

This proposal does come with some challenges. Circular colliders radiate off a lot of energy, making it difficult to accelerate electrons to high energy. Eno said this can be avoided by building a massive collider with a long tunnel (to the tune of 62 miles, in the case of the FCC), preventing electrons from losing steam as they whip around sharp corners.

The radiation problem has pushed some physicists towards another theoretical possibility: a muon collider. Muons are subatomic particles that are like electrons, but 207 times heavier, which keeps them from radiating as much. This would make them ideal candidates for collider research—if only they didn’t decay in 2.2 microseconds.

“If you talk to the muon collider proponents, their faces light up because it’s such a challenge,” Eno said. “And who doesn’t like a challenge?”

Clean Collisions 

One of Eno’s colleagues at UMD—Distinguished University Professor and theoretical physicist Raman Sundrum—endorses the muon collider idea. So much so that he and a team of physicists wrote a paper titled “The muon smasher’s guide,” which appeared in Reports on Progress in Physics in July 2022.

“We build colliders not to confirm what we already know, but to explore what we do not,” the research team wrote in their paper. “In the wake of the Higgs boson’s discovery, the question is not whether to build another collider, but which collider to build.”

They made the case for the world’s first muon smasher, arguing that these collisions would be “far cleaner” than proton collisions, which occur at the LHC. Unlike protons—a composite object made of quarks and gluons—muons are elementary particles with no smaller components. This would let physicists see only what they want to see, without any distractions.

“Muon collisions would make it easier to diagnose what’s going on,” Sundrum said. “When something extraordinary happens, it doesn’t get dwarfed by all of the mundane crashing of many parts.”

Considering that the Higgs boson only appears once in about a billion collisions at the LHC, this level of clarity and precision could make a world of difference. However, the more the field of particle physics advances, the more challenging it is to find something new.

“The Higgs was a needle in the haystack, but discovering newer particles could be even subtler and harder,” Sundrum said.Artistic rendering of the Higgs field. Credit: CERNArtistic rendering of the Higgs field. Credit: CERN

Despite these challenges, the LHC could still make a major discovery. Sundrum continues to develop theories that guide and inspire the field, including the idea that the LHC could find a “parent particle” that gave rise to all protons in the universe. If this comes to fruition, it would be worth building new colliders that could validate the LHC’s initial findings and provide a more complete picture of why matter dominates over antimatter in the universe, Sundrum said.

In the coming years and decades, physicists will continue to debate the pros and cons of various collider proposals. The outcome will depend partly on scientific advancements, and partly on political will and funding. Sundrum said it’s not cheap to build a collider—with some projects expected to cost $10 billion—but the discoveries that could come from these experiments are priceless.

“An enormous number of people find it very moving and interesting to know what it’s all about, in terms of where the universe came from, what it means and how the laws work,” Sundrum said. “Individually these experiments are expensive, but as a planet, I think we can easily afford to do it.”

Written by Emily Nunez

From Unexpected Opportunity to Game-changing Discovery

In the world of startups, opportunity can come knocking in strange ways. Six years ago, Didier Depireux (Ph.D. ’91, physics) was doing research at the University of Maryland when he was approached by Sam Owen, a young scientist who said he’d developed a device to treat motion sickness. Depireux was skeptical but decided to check it out. 

“Since I get very severe motion sickness, I made a deal with him,” Depireux recalled. “I said, ‘I’ll come over with my car and you can drive me around while I use the device. If I haven’t thrown up after 20 minutes while I’m in the back of the car reading, I’ll join the effort.’”

The two made plans to meet in Washington, D.C., on a muggy July afternoon.  Didier DepireuxDidier Depireux

“So, I go to Georgetown. The windows are down, it’s hot, it’s humid and I’m thinking I will not make it past the first turn,” Depireux explained. “Owen is driving and I’m in the back seat using his device and reading my cellphone. And for the first time in my life—and I’m over 50 years old—I was able to read in the back of a car and not get sick. I thought, ‘I need to join this, this is amazing.’”

Thanks to that strange summer ride-along, Depireux joined Owen in launching a startup called Otolith Labs to address inner ear-related conditions and their often debilitating symptoms. Otolith’s noninvasive vestibular system masking technology—designed for acute treatment of vestibular vertigo—received the FDA’s Breakthrough Device designation and clinical trials are ongoing, with support from investors including AOL founder Jack Davies and billionaire entrepreneur Mark Cuban.

All of this sets the stage for a major test that could lead to the startup’s ultimate goal—FDA approval as early as next year.

“In July we told the FDA we want to do a large-scale pivotal trial with hundreds of participants,” Depireux explained. “If all goes well, we’ll have a meeting next summer where the FDA will approve us and then the device will become available.”

For Depireux, it’s the latest step on a bigger mission that has guided his career.

Didier DepireuxDidier Depireux“It’s mostly relevance,” he explained. “I would like my life to make a difference, that’s the one thing that keeps me going.”

From philosophy to physics

Depireux was raised in Belgium. A bright, thoughtful boy, he grew up with a strong interest in science and theory, thanks to his father, a physics professor, and his mother, a chemistry teacher.

“I was always very science-y,” Depireux recalled. “Initially, I wanted to become a philosopher and I read this 800-page book—I think it was Kant—and at the end of it I was like, ‘I still don’t know the answer, and I’m not even sure I understand the question anymore.’ That’s when I thought that’s not a good fit for me.”  

Depireux eventually gravitated toward physics. After receiving his B.S. in physics from the University of Liège in Belgium in 1986, he began his graduate work in physics at the University of Maryland, where he focused on string theory and met Distinguished University Professor of Physics Sylvester James Gates Jr., who quickly became a mentor and friend.

“Jim had a huge impact on me. He was a fantastic person to work with and he had so much positive energy,” Depireux said. “I still remember late one night I was working on something, and I was stuck and I wrote to him, and he said, ‘I’ll come over, let’s work this out.’ So we had office hours at 10:30 p.m. just because I couldn’t solve a problem.”

Depireux earned his Ph.D. in 1991 and went on to do postdoctoral work in Quebec, Canada, before returning to College Park in 1994. Inspired by his wife Pamela, who was getting her Ph.D. in neuropharmacology, Depireux took on the challenge of modeling the brain and studying how it processes sound. By 2001, he was also teaching a gross anatomy class at the University of Maryland School of Medicine.

“I think, to this day, I am the only string theorist who has taught gross anatomy,” he reflected.

From his research on the brain and hearing, Depireux shifted his focus to tinnitus—disruptive ringing in the ears. He explored possible treatments and eventually teamed up with former UMD Bioengineering Professor Benjamin Shapiro who was already working on the drug delivery challenges Depireux was trying to solve.

“I wanted to get drug delivery to the ear but I didn’t know how to do it,” Depireux said. “He had this method with nanoparticles to deliver drugs and I had the target so we started working together.”

In 2013, the two launched Otomagnetics, a startup that has made major strides in developing noninvasive methods to treat inner ear diseases and more.

“We’ve gotten very nice results as far as drug delivery goes and Otomagnetics is still an ongoing concern,” Depireux explained, “But raising money for drug delivery is the real challenge, because to get drug delivery to the ear is going to take hundreds of millions of dollars, and that hasn’t happened yet.”

Going all-in on Otolith

Depireux balanced his time between Otomagnetics, his UMD research and teaching at the School of Medicine until 2016, when he experienced Owen’s experimental motion sickness device for the first time. Depireux saw so much potential with the device that he went all-in on Otolith. 

“You have to have pretty strong resilience to join a startup—I went for a year and a half without a salary or anything,” Depireux explained. “It’s not like we didn’t have money, we just needed all of the money to develop the device, get the patents in, all of the things we had to do.”

Though Otolith started with a motion sickness device, its co-founders hoped to make an even bigger impact by developing a device for vertigo, debilitating dizziness often caused by problems in the inner ear.

And they had a plan.

“For tinnitus or ringing in the ears, some patients get relief from a noise masker—they can still perceive their tinnitus, but the noise masker allows them to ignore the tinnitus,” Depireux explained. “So Sam, my cofounder said, ‘Why don’t we come up with a noise masker for the vestibular system?’”

That’s exactly what they did. Their novel device, worn like a headband, treats vertigo by applying localized mechanical stimulation to the vestibular system through calibrated vibrations. 

Depireux says he never would have made it this far without physics.

“My physics training really helped me,” he explained. “In physics, you have this huge problem and you have to break it down. If it’s intractable, you make it tractable, break it into small, simple things we can understand and then we can solve it.”

Promising results and personal stories

Clinical trials of Otolith’s investigational headband have yielded promising results. In the first of a series of ongoing clinical studies, 87.5% of the 40 participants reported a reduction in their vertigo within five minutes of turning on the device. But for Depireux, it’s the personal stories that are most rewarding.

“Somehow my phone number was listed as an emergency contact on clinicaltrials.gov, which I thought would be for emergencies only,” he said. “I’d have patients calling me in tears, telling me, ‘When my grandkids visit, I can finally bend down and pick them up, and it used to be that just bending down would send me into such vertigo that I would have to go to bed for days.’ Or ‘For the first time in years, I’ve been able to walk around the block.’ That’s what really motivates me.”

It's been Depireux’s goal all along—doing relevant research that changes people’s lives.

“We cannot help 100% of vertigo patients, no device does that,” he reflected. “But if we can help even half of those patients, that’s really my hope.”

Looking back on a career path that’s been anything but predictable, Depireux appreciates every challenge and setback that got him to where he is today.

“Something can feel like a failure when things go wrong, but then later you realize you really learned something from it,” he reflected. “I’m so grateful I was given the opportunity to come to the U.S. and study physics and do research in College Park, do this random walk in my career and finally end up doing something that I feel has given me great meaning in my life.”

Written by Leslie Miller

Faculty, Staff, Student and Alumni Awards & Notes

We proudly recognize members of our community who recently garnered major honors, began new positions and more.

Faculty and Staff 
 Students
 Alumni
  • John "Yiannis" Antoniades (Ph.D., '83) was named Executive Vice President of Meta Materials.
  • Laird Egan (Ph.D., '21) described hasty preparations for COVID-mandated remote control of an experiment in a JQI podcast.
  • Joe Grochowski (M.S., '10) teaches physics at West Shore Community College in Scottville, Michigan.
  • Alan Henry (B.S., '02) wrote a book, Seen, Heard & Paid.  Henry will give the CMNS Diversity Lecture on Thurs., Nov. 10 at 4 p.m. in 0202 E. St. John Bldg.
  • Scott Kordella (B.S., '81) is the Director of Space Systems at The MITRE Corporation.
  • V. Bram Lillard (M.S., '01, Ph.D., '04) was named director of the Operational Evaluation Division of the Institute for Defense Analyses.
  • Scott Moroch (B.S., '21) received a $250k Hertz Fellowship.
  • Guido Pagano, a former UMD/JQI postdoc, has received a DOE Early Career Award. 
  • Julia Ruth (B.S., '14) was featured in Symmetry magazine.
  • Sylvie Ryckebusch (B.S., '87) was named Chief Business Officer of BioInvent.
  • Pablo Solano ( Ph.D., '17) was named a CIFAR Azrieli Global Scholar.
Department News
  • The National Science Foundation has awarded an S-STEM grant for Chesapeake Scholars in the Physical Sciences, with Eun-Suk Seo as PI and Carter Hall, Chandra Turpen, Donna Hammer and Jason D. Kahn (chemistry) as co-PIs.
  • IonQ was named one of Time's Most Influential Companies. 
In Memoriam

Alfred George Lieberman (M.S., '72), who spent much of his career at NIST/Gaithersburg, died on June 25.

 

Women in Physics Group Changes its Name to Physicists of Underrepresented Genders

Women in Physics (WiP) has officially been renamed Physicists of Underrepresented Genders (PUGs) at the University of Maryland.

According to UMDPUGs (Physicists of Underrepresented Genders)PUGs (Physicists of Underrepresented Genders) physics graduate student Ina Flood, the group’s new president, the change reflects the organization’s ongoing commitment to fostering a supportive and encouraging community for all.

“Changing our name was a group decision initiated under Mika Chmielewski, our previous president,” Flood said. “The rationale behind this decision was to make it obvious that we’re committed to supporting people who might feel like they are underrepresented in the physics community. The name change is to help people feel that they’re included and welcome from the get-go.”

For more than a decade, WiP has provided physics undergraduate and graduate students with resources such as a mentoring program and networking opportunities. In addition to professional development events led by physics faculty members and professionals, the club also offered social programming like group study sessions, where members mingled and made new friends.

PUGs plans to continue the group’s ongoing programs and opportunities while taking a more proactive approach to supporting all members of the physics community. 

“As a university club, we’re already open to all people and sincerely welcome anyone who is interested in physics,” said incoming physics graduate student Kate Sturge (B.S. ’22, physics; B.S. ’22, astronomy), who was an active undergraduate member of WiP and is currently the PUGs webmaster and social media manager. “But this name change is our way of making ourselves more deliberate and explicit in supporting everyone in physics.”

Physics Chair Steve Rolston echoes the sentiment: "We value the contributions of everyone who shares our love of physics. We appreciate PUGs’ efforts to make that crystal clear."

Flood, Sturge and other PUGs members plan to do more to coordinate with other LGBTQ+ student organizations on campus. Flood said she hopes increased communication and collaboration will also help PUGs connect mentors with mentees and share more institutional knowledge about STEM and physics. The group also plans to develop more opportunities for safe in-person gatherings, including “study hours,” during which physics students gather to discuss and do homework together.

“Our biggest goal after our name change is to expand our accessibility and availability to members who may need guidance or community support during the school year,” Flood said. “It’s really important to our organization that we get people together, facilitate meaningful conversations and celebrate our shared identity as physicists.”