Physics Student Named 2020 Goldwater Scholar

moroch goldwaterScott Moroch, courtesy of same

Scott Moroch was one of four CMNS undergraduates to receive a scholarship from the Barry Goldwater Scholarship and Excellence in Education Foundation, which encourages students to pursue advanced study and research careers in the sciences, engineering and mathematics.  Over the last decade, UMD’s nominations yielded 33 scholarships—the most in the nation, followed by Stanford University with 32. Harvard University, the Massachusetts Institute of Technology and Johns Hopkins University also rank in the top 10. Moroch is the eighth physics undergraduate recipient in the past four years. 

“Our scholars are a uniquely talented group, already making discoveries in their fields of study—from developing more stable batteries and innovative power supplies to streamlining the pathway of drug design and understanding the contributions of RNA in cancer and other diseases,” said Robert Infantino, associate dean of undergraduate education in the College of Computer, Mathematical, and Natural Sciences. Infantino has led UMD’s Goldwater Scholarship nominating process since 2001.

Moroch was among the 396 Barry Goldwater Scholars selected from 1,343 students nominated nationally this year. Goldwater Scholars receive one- or two-year scholarships that cover the cost of tuition, fees, books, and room and board up to $7,500 per year. These scholarships are a stepping-stone to future support for the students’ research careers. The Goldwater Foundation has honored 70 UMD winners and five honorable mentions since the program’s first award was given in 1989.

Moroch, a native of Wayne, New Jersey, designed his own particle accelerator when he was still in high school. Since enrolling at Maryland, he has been working on UMD’s cyclotron with Timothy Koeth, an assistant professor in the Department of Materials Science and Engineering and the Institute for Research in Electronics and Applied Physics.

A cyclotron is a type of particle accelerator that won its inventor the Nobel Prize in physics in 1939. The beams that cyclotrons produce, while potentially dangerous, accomplish wondrous things—killing cancer cells with extreme precision, for instance, or changing atoms into a different element altogether.

Moroch is working with Koeth to develop a novel cyclotron storage ring for Lockheed Martin. The company is interested in using the technology for a new class of power supplies for aerospace electric propulsion systems that can carry things into the solar system and beyond.

With initial funding from Lockheed, Moroch showed that a cyclotron design could be effective, but it was unstable. So the company decided to fund a more ambitious project at UMD—where the instabilities could be factored out. Moroch now leads a significant portion of the research team.

“Scott is no ordinary exceptional student,” said E. H. “Ned” Allen, senior fellow and chief scientist at Lockheed Martin. “He has won so much respect that he has become a colleague and a first-line team member—even though still an undergraduate.”

Last summer and fall, Moroch led a team of three undergraduates in assembling and upgrading a low-energy storage ring as part of the project. A storage ring is a type of particle accelerator in which a continuous or pulsed particle beam may be kept circulating typically for many hours. The students retrieved used components from another university, restored the retrieved components, designed and fabricated missing subsystems, reassembled them into a working ion storage ring, and brought the whole assembly under high vacuum. The new accelerator got up and running early in the spring semester, achieving what’s known as “first beam.”

“In the past 20 years, I have mentored several dozen undergraduate researchers, and Scott Moroch is the first that has demonstrated the entire cycle of research and brought in substantial research funds,” Koeth said.

Moroch also helped design an electron beamline in collaboration with Los Alamos National Laboratory. In graduate school, Moroch plans to pursue a Ph.D. in accelerator physics.

Read about the other CMNS recipients here.

Jarzynski Wins Simons Fellowship

Chris Jarzynski,  a Distinguished University Professor in the University of jarzynski by levine 23Christopher Jarzynski. Photo: by Faye Levine Maryland’s Department of Chemistry and Biochemistry, Department of Physics, and Institute for Physical Science and Technology (IPST), is one of three faculty members in the University of Maryland’s College of Computer, Mathematical, and Natural Sciences (CMNS) to received a 2020 Simons Foundation Fellowship. The prestigious fellowships provide support for faculty scientists to extend a one-term, university-sponsored sabbatical into a full year, allowing them to focus solely on advancing fundamental research in mathematics or theoretical physics.

UMD researchers received 2 of the 40 fellowships awarded for mathematics and one of the eight fellowships for theoretical physics. UMD topped the list with the most 2020 Simons Fellows, tied with the University of Michigan, the University of Illinois at Urbana-Champaign and Stony Brook University. UMD’s 2020 Simons Fellows join six other CMNS faculty members who were named Simons Fellows since 2013.

“We are very pleased to congratulate all three of these very accomplished researchers,” said CMNS Dean Amitabh Varshney. “The awarding of this very competitive fellowship to three of our researchers demonstrates UMD’s strength in fundamental research in both mathematics and physics.” 

Jarzynski is a statistical physicist and theoretical chemist who models the random motions of atoms and molecules. Working at the boundary between chemistry and physics, Jarzynski studies how the laws of thermodynamics—originally developed to describe the operation of steam engines—apply to complex microscopic systems such as living cells and artificial nanoscale machines.

Jarzkynski is well known for developing an equation to express the second law of thermodynamics for systems at the molecular scale. The equation is known as the Jarzynski equality, which was noted by the Nobel Committee for Physics as an application of the 2018 prize-winning invention, optical tweezers. This research has led to a new method for measuring “free energy”—the energy available to any system to perform useful work—in extremely small systems.

A Fellow of the American Physical Society (APS) and the American Academy of Arts and Sciences, Jarzynski received the APS 2019 Lars Onsager Prize, which recognizes outstanding research in theoretical statistical physics. He was also awarded a Fulbright Fellowship and the Raymond and Beverly Sackler Prize in the Physical Sciences. He serves on the editorial board for the Journal of Statistical Mechanics: Theory and Experiment and is an associate editor for the Journal of Statistical Physics.

Jarzynksi earned his B.A. in physics from Princeton University and his Ph.D. in physics from the University of California, Berkeley. After a postdoctoral appointment at the Institute for Nuclear Theory in Seattle, he spent 10 years at Los Alamos National Laboratory. He has been on the faculty of the University of Maryland since 2006.

During his sabbatical, Jarzynski will be based at UMD but intends to travel to Europe and California for workshops, visiting professorships and collaborations.

UMD's other Simons Fellows were Professor Jacob Bedrossian of the Department of Mathematics and the Center for Scientific Computation and Mathematical Modeling and Professor Leonid Koralov of the Department of Mathematics. Mohammad Hafezi of Physics and ECE was named a 2020 Simons Investigator.

Original story here.



Lathrop Lab's Geodynamo Set for Overhaul

In a hangar-sized laboratory off Paint Branch Drive, Dan Lathrop gives the signal, and what he often calls simply “the experiment” awakens. A huge, steel sphere with tubes and electrical wires snaking across its surface begins a stately, nearly silent rotation inside a towering cage-like structure.

That’s the experiment running at visitor speed, however. When only Lathrop, a Distinguished Scholar-Teacher and professor in physics, and his graduate students are present to gather data, they crank up its 350 horsepower electric motor to spin 80 times faster, until the 3-meter globe encasing 25,000 pounds of liquid sodium blurs out at four revolutions per second.geodynamo 1920x1080Professor Dan Lathrop examines the 3-meter steel sphere he uses in simulations of the Earth's "geodynamo." Hidden inside the spinning outer sphere (diagram, below) molten sodium and an even quicker-whirling inner sphere represent the earth's liquid outer core and solid inner core, which create geomagnetism. (Photo by John T. Consoli; diagram by Kolin Behrens)

For safety reasons, in the 11 years since he first switched the experiment on, no lab guest has ever watched it run that fast. Lathrop hasn’t either, exactly. “You can’t see it at full speed,” he said.

If “the experiment” sounds pretty singular, that’s because there’s nothing else like it on the planet. Lathrop, an expert in turbulent flows, envisioned the giant apparatus and several smaller predecessors as a way to simulate and perhaps even predict changes in the Earth’s magnetic field, which originates in its core and helps protect the surface from harmful solar radiation. While the machine has fascinated the geophysics community and generated useful results about planetary magnetic fields, it has never quite fulfilled Lathrop’s hopes. So this year, supported by a recently renewed National Science Foundation grant, he and his lab members will undertake a painstaking process to drain the flammable sodium, dismantle the device, upgrade it and—if the plan works—create a better magnetic model of the Earth.

Our planet has a “ggeodynamo diagrameodynamo,” a self-generating, self-sustaining magnetic field created by flows in its molten outer core, a layer of mostly iron and nickel more than 3,000 kilometers beneath our feet. Swirling turbulence in the liquid metal, caused by convection and the planet’s rotation, gives rise to electrical currents and magnetic fields that feed on each other.

So far, Lathrop’s experiment needs external current to generate a magnetic field; soon he hopes that will no longer be necessary. Doctoral students Rubén Rojas and Artur Perevalov in physics, along with Heidi Myers in geology and Sarah Burnett in mathematics, have been researching ways to modify a hidden, inner sphere of the device—analogous to Earth’s solid inner core—by adding texture to create swirling, helical flows in the highly conductive liquid sodium, generating electrical currents.

It’s never been tried before, so the results are hard to predict.

“I try not to be a foolish optimist, but you know, you aren’t going to build an experiment like this without a certain amount of optimism that there are interesting things to see,” Lathrop said.

The biggest potential prize would be an ability to predict the “weather” of Earth’s magnetic field, which is constantly in flux. Geologic evidence suggests the poles have reversed hundreds of times—most recently 780,000 years ago—and indeed, the North Pole has been moving from Canada toward Russia with increasing speed in recent years. During such a flip, much of the planet’s surface could have a weaker magnetic shield from solar radiation. (For a preview of what that could be like, look at Mars, which lacks a geodynamo.)

Even now, solar storms do create problems on Earth, damaging satellites and sensitive electronics, said Sara Gibson, a solar physicist at the National Center for Atmospheric Research in Boulder, Colo. For instance, if a massive 1859 solar storm that caused aurora as far south as the tropics hit today, it could fry communications and electrical grids worldwide.

“Dan’s work is really important, because it’s vital to understand the Earth’s magnetic field, which is coupling with what’s coming from the sun, and creating these magnetic impacts,” Gibson said.

Lathrop doesn’t promote his research with disaster scenarios. A pole reversal may not be in the offing at all, and would take more than 1,000 years. But what about scientific curiosity as well as simple prudence concerning a factor that allowed life to arise on earth?

“You think you’d want a solid scientific base knowing, well, how does it work, and how did it get there?” he said. “Where’s it at now? And where’s it going?”

Original story by Chris Carroll, Maryland Today 

Watch the 3 meter experiment.