UMD Physicists Advance NASA’s Mission to ‘Touch the Sun’

Those who say there’s “nothing new under the sun” must not know about NASA’s Parker Solar Probe mission. Since its launch in 2018, this spacecraft has been shedding new light on Earth’s sun—and University of Maryland physicists are behind many of its discoveries.

At its core, the Parker Solar Probe is “on a mission to touch the sun,” in NASA’s words. It endures extreme conditions while dipping in and out of the corona—the outermost layer of the sun’s atmosphere—to collect data on magnetic fields, plasma and energetic particles. The corona is at least 100 times hotter than the sun’s surface, but it’s no match for the spacecraft’s incredible speed and carbon composite shield, which can survive 2,500 degrees Fahrenheit. Last year, the spacecraft broke its own record for the fastest object ever made by humans. Parker Solar Probe (courtesy of NASA)Parker Solar Probe (courtesy of NASA)

This engineering feat was built to solve solar mysteries that have long confounded scientists: What makes the sun’s corona so much hotter than its surface, and what powers the sun’s supersonic wind? These questions aren’t just of interest to scientists, either. The solar wind, which carries plasma and part of the sun’s magnetic field, can cause geomagnetic storms capable of knocking out power grids on Earth or endangering astronauts in space.

To better understand these mechanisms, the Parker Solar Probe will attempt its deepest dive into the corona on December 24, 2024, with plans to come within 3.9 million miles of the sun’s surface. Researchers hope its findings will help them predict space weather with greater accuracy and frequency in the future.

James Drake, a Distinguished University Professor in UMD’s Department of Physics and Institute for Physical Science and Technology (IPST), is helping to move the needle closer to that goal as a member of the Parker Solar Probe research team.

“This mission is what's called a discovery mission, and with a discovery mission we can never be sure what we're going to find,” Drake said. “But of course, everybody is most excited about the data that will come from the Parker Solar Probe getting very close to the sun because that will reveal new information about the solar wind.” 

Reconnecting the dots

Drake and Marc Swisdak, a research scientist in UMD’s Institute for Research in Electronics & Applied Physics (IREAP), have been involved with this mission since its inception. The researchers were asked to join because of their expertise in magnetic reconnection, a process that occurs when magnetic fields pointing in opposite directions cross-connect, releasing large amounts of magnetic energy.

Before the Parker Solar Probe, it was known that magnetic reconnection could produce solar flares and coronal mass ejections that launch magnetic energy and plasma out into space. However, this mission revealed just how important magnetic reconnection is to so many other solar processes. 

Early Parker Solar Probe data showed that magnetic reconnection was happening frequently near the equatorial plane of the heliosphere, the giant magnetic bubble that surrounds the sun and all of the planets. More specifically, this activity was observed in the heliospheric current sheet, which divides sectors of the magnetic field that point toward and away from the sun. 

“That was a big surprise,” Drake said of their findings. “Every time the spacecraft crossed the heliospheric current sheet, we saw evidence for reconnection and the associated heating and energization of the ambient plasma.”

In 2021, the Parker Solar Probe made another unexpected discovery: the existence of switchbacks in the solar wind, which Drake described as “kinks in the magnetic field.” Characterized by sharp changes in the magnetic field’s direction, these switchbacks loosely trace the shape of the letter S.

“No one predicted the switchbacks—at least not the magnitude and number of them—when Parker launched,” Swisdak said. 

To explain this odd phenomenon, Drake, Swisdak and other collaborators theorized that switchbacks were produced by magnetic reconnection in the corona. While the exact origin of those switchbacks hasn’t been definitively solved, it prompted UMD’s team to take a closer look at magnetic reconnection, especially its role in driving the solar wind.

“The role of reconnection has gone from something that was not necessarily that significant at the beginning to a major component of the entire Parker Solar Probe mission,” Drake said. “Because of our group's expertise on the magnetic reconnection topic, we have played a central role in much of this work.”

Last year, Drake and Swisdak co-authored a study with other members of the Parker science team that explained how the sun’s fast wind—one of two types of solar wind—can surpass 1 million miles per hour. They once again saw that magnetic reconnection was responsible, specifically the kind that occurs between open and closed magnetic fields, known as interchange reconnection.

To test their theories about solar activity, the UMD team also uses computer simulations to try to reproduce Parker observations. 

“I think that one of the things that convinced people that magnetic reconnection was a major driver of the solar wind is that our computer simulations were able to produce the energetic particles that they saw in the Parker Solar Probe data,” Drake said. 

As part of his dissertation, physics Ph.D. student Zhiyu Yin built the simulation model that is used to see how particles might accelerate during magnetic reconnection.

“Magnetic reconnection is very important, and our simulation model can help us connect theory with observations,” Yin said. “I'm really honored to be part of the Parker Solar Probe mission and to contribute to its work, and I believe it could lead to even more discoveries about the physics of the sun, giving us the confidence to take on more projects in exploring the solar system and other astrophysical realms.”

Swisdak explained that simulations also help researchers push past the limitations of space probes.

“Observations are measuring something that is real, but they’re limited. Parker can only be in one place at one time, it has a limited lifetime and it’s also very hard to run reproducible experiments on it,” Swisdak said. “Computations have complementary advantages in that you can set up a simulation based on what Parker is observing, but then you can tweak the parameters to see the bigger picture of what we think is happening.”

‘Things no one has seen’

There are still unsolved mysteries, including the exact mechanisms that produce switchbacks and drive the solar wind, but researchers hope that the Parker Solar Probe will continue to answer these and other important questions. The sun is currently experiencing more intense solar flares and coronal mass ejections than usual, which could yield new and interesting data on the mechanisms that energize particles in these explosive events.

This research also has wider relevance. Studying the solar wind can help scientists understand other winds throughout the universe, including the powerful winds produced by black holes and rapidly rotating stars called pulsars. Winds can even offer clues about the habitability of planets because of their ability to deflect harmful cosmic rays, which are forms of radiation.

“One of the reasons why the solar wind is important is because it protects planetary bodies from these very energetic particles that are bouncing around the galaxy,” Drake said. “If we didn't have that solar wind protecting us, it's not totally clear whether the Earth would have been a habitable environment.”

As the spacecraft prepares for its December descent into the sun, the UMD team is eager to see what the new observations will reveal.

“One of the nice things about being involved with this mission is that it’s a chance to make observations of things that no one has seen before. It lets you go into a new regime of space and say, ‘Alright, we thought things would look this way, and inevitably they don't,’” Swisdak said. “The ability to get close enough to the sun to see where the solar wind starts and where coronal mass ejections begin—and being able to take direct measurements of those phenomena—is really exciting.”

Catching Cosmic Waves

University of Maryland (UMD) physics Ph.D. student Max Trevor found himself at a crossroads in 2016. Long fascinated by black holes, Trevor studied the enigmatic objects using X-ray astronomy as an undergraduate at the University of Maryland, Baltimore County (UMBC). But as his graduation date grew closer, Trevor wondered how he could take his passion to the next level. 

A groundbreaking announcement helped Trevor make a decision. In February 2016, scientists working on the Laser Interferometer Gravitational-Wave Observatory (LIGO) project announced that for the first time in history, they detected gravitational waves—ripples in spacetime caused by some of the most violent events in the universe, waves that were caused by two black holes colliding with each other billions of light-years away. For Trevor and many other researchers, the Nobel Prize-winning discovery opened up an entirely new way of observing the universe.

“I had some experience with X-rays at UMBC, which I enjoyed,” Trevor recalled. “But hearing about LIGO’s success made me think that gravitational astronomy was going to be the new hot research area for high-energy astrophysics. At that moment, I knew I had to jump in no matter what.”

Knowing that he wanted to pursue gravitational wave research and LIGO science as a graduate student, Trevor found his perfect match at UMD. Attracted by the Department of Physics’ decades-long legacy of gravitational wave research and its continued influence on the field, he joined the lab of Peter Shawhan—a professor of physics and LIGO principal investigator—in spring 2020. Together, they’re working to detect gravitational waves and improve the quality of the data collected by LIGO to ensure its accuracy for all researchers in the community.  

Shawhan, whose work with LIGO stretches back to his time as a postdoctoral researcher at Caltech in 1999, says that the project has come a long way since the announcement of its initial success.

“Today we can laugh and say, ‘Oh, it’s just another regular binary black hole merger,’ but it was a really big deal the first time we were able to detect one,” Shawhan said. “We’re now in the middle of LIGO’s fourth observational run. Thanks to decades of hard work from across the globe and our efforts here at UMD, we can now observe these events every couple of days.” 

Filtering out the noise, keeping the community connected

Detecting gravitational waves in space is no easy task, even now. To do its job, LIGO requires incredibly sensitive instruments called interferometers, which use laser beams to measure minute changes in distance caused by passing gravitational waves. There are currently two interferometers in the United States—one in Louisiana and another in Washington state—and it’s Trevor’s job to weed through the flood of data these interferometers produce, searching for the telltale signs of a gravitational wave event. 

“I write code that performs data analysis in real time. It basically asks, ‘Is this a gravitational wave, yes or no?’ and it tries to match the data points with known profiles of gravitational waves,” Trevor explained. “After that’s done, it repeats the process with the next batch. All this happens in seconds.”

Although interferometers can capture faint signals that come with faraway colliding neutron stars or merging black holes, the instruments are also prone to catching other waves that may not be involved with the cosmos at all—like nearby earthquakes, moving trains or even local weather. Trevor uses tools like machine learning to correlate these irrelevant waves with potential sources and adjusts the detection code to avoid them. According to Shawhan, Trevor’s work is paving the way for upgrades to the LIGO system for future observational runs. 

“Max’s improvements to the algorithms are especially valuable for detecting signals that are particularly challenging to identify,” Shawhan said. “He’s made it easier to separate out irrelevant noise from signals that are made by massive black holes.” 

Trevor is also a major part of the effort to keep astronomers around the world in touch with LIGO’s latest findings. He’s in charge of operating and running a rapid alert software package called Python search for Compact Binary Coalescences (PyCBC). Any time a potential gravitational wave is detected in space, PyCBC feeds information into a system that sends out rapid alerts to astronomers around the world through NASA’s General Coordinates Network—giving them a chance to turn their telescopes to the right part of the sky and potentially catch any visible light from explosive cosmic events. Thanks in part to Trevor’s efforts, PyCBC sends out an alert about once every three days on average, helping to produce over 120 alerts total since LIGO’s current run began.  GCN diagramGCN diagram

“The data is collected, analyzed and sent out really quickly,” Trevor said. “The astronomy community can get preliminary alerts about a possible event within 30 seconds. Timeliness is essential so that scientists can observe the event right as it’s happening and we can form a better understanding of phenomena like black holes and neutron star mergers. It’s really fulfilling for me to play a part in keeping everyone connected.” 

Since joining Shawhan’s lab, Trevor has made significant contributions to LIGO, co-authoring over 30 highly cited papers on the data gathered by the system. As he nears the completion of his doctoral program at UMD, Trevor hopes to continue his work. He believes that his projects, specifically those focused on identifying extraneous noise sources, will play a role in optimizing the next version of LIGO and bring scientists closer to understanding the world beyond Earth. 

“This current observational run is projected to end in June 2025, which is when LIGO will undergo crucial upgrades and changes to make it even more sensitive than previous iterations,” Trevor said. “I’d like to keep doing my part in helping the project stay alive—and supporting the community that seeks to explain how our universe works.”  

Faculty, Staff, Student and Alumni Awards & Notes

We proudly recognize members of our community who recently garnered major honors, began new positions and more.

 Faculty and Staff 
Students
Alumni
Department News 

UMD Award Provided Undergraduate with Experience Bombarding Samples with Neutrons at a National Lab

For students interested in experimental research, there is no substitute for performing experiments in a lab. Working in a lab is invaluable for picking up important skills and learning if a research area is a good fit.

For senior physics and mathematics double major Patrick Chen, who plans to pursue experimental physics in the future, UMD has provided ample opportunities for hands-on experience. Throughout his time at UMD, Chen has taken the initiative to work outside his classes and get practical lab experience. This summer an endowed undergraduate award allowed Chen to further expand that experience by funding his travel to Oak Ridge National Laboratory (ORNL) in Tennessee. At the lab, he bombarded samples with neutrons from a nuclear reactor in experiments he had previously only been able to simulate. 

“I always enjoyed hands-on stuff,” Chen said. “I was really compelled to want to see what it's actually like doing the experiments and whether that's something I actually like, as well as to learn about the process and see what it's like to travel to these facilities to go do work.”

The trip provided Chen with practical experience using lab equipment that requires large, specialized facilities—like a nuclear reactor. It also gave him a broader perspective on the reality of being an experimental physicist. The insights and experiences come at a critical time as Chen begins his senior year and considers his options for graduate school and professionally pursuing physics. Patrick ChenPatrick Chen

Chen’s opportunity to visit ORNL was built on a foundation of research experience that he has been establishing throughout his time at UMD. He got an early start exploring research. The summer before his freshman year, he came to campus early and participated in UMD’s Toolkit for Success program. The program, run by Donna Hammer, the physics director of education, and Angel Torres, the physics outreach coordinator, helps students build skills and explore career options through physics and math lessons, a research project and meetings with professionals from industry, government, and academia.

“I think that program is really great, but also after coming to UMD, Angel and Donna have been incredibly helpful if I have any questions or need anything,” Chen said. “They're always there for me and they've been very helpful during my time here at UMD in navigating the physics department and making me aware of opportunities.” 

During Chen’s freshman year, he kept an eye out for more opportunities to get research experience. He attended a department event where members of several labs presented their research to students. The work being performed in the lab of Nick Butch, an Adjunct Associate Professor of physics at UMD and a Physicist at the NIST Center for Neutron Research, caught Chen’s attention, and Butch welcomed Chen into the lab when he reached out. Initially, Chen mainly served as an extra pair of hands around the lab, assisting with activities like processing data that labmates had collected and programming the heating cycles on the furnaces used to fabricate materials.

Eventually, Butch created a project for several undergraduate students to work on as a group, aiming to provide them with experience in the research area of condensed matter physics, which he specializes in. The topic deals with how particles, particularly electrons, interact to produce the emergent properties of a material, and classes on condensed matter are generally taught at the graduate level, which can make it tricky for undergraduate students to explore an interest in the topic. 

“We make our own materials, so the benefit of having undergrads work on that kind of research is that it doesn't actually necessarily require a lot of physics classroom knowledge to get started,” Butch said. “The way that I have it set up, we don't necessarily have the students sitting and doing heavy analysis that is requiring a lot of mathematics or anything like that.”

In the project, the students make a variety of material samples themselves and then measure the properties of the materials. Since the students work as a group and individuals can come and go, it gives them a chance to explore condensed matter research, without the hassle of starting a project from scratch or experiments being left unfinished if they’re a bad fit for a particular student. Chen and a few of his classmates have kept the project going over the past couple of years, and by working together they can schedule around their classes and steadily maintain progress improving the processes, making new materials and refining their measurement skills.

“Patrick is a wonderful student,” Butch said. “I look forward to seeing impressive things from him in the future.”

When Chen started looking for summer research opportunities in 2023, Butch encouraged him to apply to the Summer Undergraduate Research Fellowship (SURF) at NIST, which is supported by the Center for High Resolution Neutron Scattering. Chen did, and the program accepted him. He was assigned to work with NIST Instrument Scientist Jonathan Gaudet who works at the NIST Center for Neutron Research. Gaudet gave Chen a project exploring the magnetic behaviors of materials called Weyl semimetals. 

When studying Weyl semimetals and other materials, researchers, like Gaudet, often rely on neutron scattering experiments to study the material. In the experiments, researchers shoot neutrons through a material, which provides them with an up-close image of the structure of materials—kind of like a microscope. 

But unlike a microscope that uses visible light, neutron scattering doesn’t just provide an image of the surface. Neutrons can pass through solid objects without much chance of interacting since they don’t have an electrical charge—meaning they don’t interact with the outer shell of electrons of an atom and must hit the much smaller target of the nucleus to interact. If researchers send enough neutrons into a material, a few will collide and be deflected from their original path. Researchers can analyze where the deflected neutrons are sent to determine the hidden structure they interacted with inside the material. 

Unfortunately, the NIST Center for Neutron Research is in the middle of an extensive repair and upgrade project, so the equipment for performing neutron scattering experiments has been unavailable for use. Since Chen couldn’t perform measurements at NIST to observe the structure of real Weyl semimetals, he had to pursue an alternative method of investigation—simulating the materials on a computer.

Chen’s efforts last summer produced a simulation that he used to predict how neutrons would scatter through Weyl semimetals. But Chen still wanted to perform real neutron scattering experiments himself. So, he was interested when Gaudet mentioned an upcoming trip to ORNL that Chen could join. However, to take the opportunity, Chen had to cover his travel expenses. He applied for a College of Computer, Mathematical, and Natural Sciences Alumni Network Endowed Undergraduate Award and obtained the necessary funding. He was one of only nine students from across the entire College of Computer, Mathematical, and Natural Sciences to receive funding through the program this year.

With the money, Chen was able to join the trip to ORNL in Tennessee as part of his fellowship this summer. There, he got to experience the culture of a new laboratory and was finally able to perform the neutron scattering experiments that he’d spent the last summer studying through a computer program. He helped perform measurements on Weyl semimetals for his own project as well as other projects from Gaudet’s lab. 

Not everything went smoothly. Gaudet had time reserved to use three different machines at the lab, and technical issues sprung up on two of the machines—one wouldn’t cool down properly and another had a mechanical malfunction. So before getting experience running the experiments, Chen got a taste of troubleshooting equipment on a fixed schedule.

“Sitting at a computer looking at either generated data or gathered data, that's not actually like dealing with the machines breaking down, figuring out what can we do since we lost time because we had to fix the machines and things like that,” Chen said. “I think having done this once now, it's really helped me to understand a lot more how the instruments actually work and given me a better understanding of the process, which has helped me better contextualize and understand the data I have been working with.”

With those insights and new experimental data in hand, Chen is ready to move on to the next step of research: analyzing the data and sharing it with the rest of the research community. Chen’s initial analysis of the data he collected, as well as data from other experiments, validates his project from last summer.

“Patrick’s simulations led to several predictions, which could be verified with neutron scattering experiments,” Gaudet said. “He carried out such neutron experiments this summer at the Oak Ridge National Laboratory and successfully confirmed his predictions. The success of his project speaks to Patrick's motivation, curiosity, and ability for science, which I hope he will pursue further.”

During his last year at UMD, Chen plans to apply to graduate programs in physics and to continue working with Gaudet to write a paper on his research project to submit to an academic journal.

“I enjoyed the experience immensely, both for being able to gather the data and see all the stuff and do all the experiments as well as getting the chance to travel to the Smoky Mountains,” Chen said. “If I do end up continuing with condensed matter in grad school, neutron scattering is something that's probably pretty likely that I'll be using, so getting this experience now is really valuable.”

Story by Bailey Bedford