Alicia Kollár Joins UMD Physics

Alicia KollárAlicia Kollár

Alicia Kollár joins the Department of Physics on August 1, 2019 as the Chesapeake Assistant Professor of Physics.

Kollár holds a bachelor’s degree in physics from Princeton University, and earned her doctorate in applied physics at Stanford University in 2016, working on the design and construction of a multimode cavity-BEC apparatus to study superradiant self-organization. She was a National Defense Science and Engineering Fellow at Stanford, and after graduating continued for one year as a postdoctoral scholar. She then accepted a Princeton Materials Science Postdoctoral Fellowship to work on quantum simulation of solid-state physics using circuit QED lattices; that research was recently featured in Physics World.

At UMD, Kollár will be a Fellow of the Joint Quantum Institute and the newly-formed Quantum Technology Center, a collaborative effort between the A. James Clark School of Engineering and the College of Computer Mathematical and Naturals Sciences to establish UMD as the nation’s leading center for academic quantum technology research and education.

 

Mirrors on the Moon

Along with Neil Armstrong and Buzz Aldrin, University of Maryland scientists left a lasting mark on the moon when Apollo 11 landed there 50 years ago this week, one that is still imprinting on the world of physics.

That’s because a piece of equipment the astronauts left behind—a small panel of 100 mirrors designed by UMD physicists Doug Currie and the late Carroll Alley and a national team—remains in use for experiments. It may soon get an upgrade, too, thanks to NASA’s new project to send astronauts back to the moon by 2024 and, eventually, to Mars.

Called the lunar laser ranging array, it works in tandem with two others placed by the Apollo 14 and 15 missions in 1971, and provides a target for lasers beamed from telescopes on Earth. The bounce-back from those pulses enables precise measurements of distance that in the past five decades have led to discoveries ranging from the moon’s liquid core to confirming that Earth’s continents are still (slowly) moving.

In fact, the arrays are responsible for “really the only verification” of some aspects of Einstein’s general theory of relativity, said Currie, now a professor emeritus at UMD.

“Science has come out of it remarkably,” he said.

There’s plenty more to learn, as Currie has been working with the National Laboratories of Frascati, Italy, and commercial space company Moon Express to get a new generation of arrays onto the moon. NASA announced earlier this month that the arrays will be one of 12 experiments placed on future payload missions as part of the Artemis lunar program and in partnership with private space companies.

With measurements exponentially more accurate, Currie hopes the new instruments shed light on mysteries like dark energy and dark matter. “The gain we will have with the next generation is significant,” Currie said. “It allows us to chase in the direction of some of the fundamental questions of physics.”

Article by Liam Farrell, reprinted from Maryland Today

Read more about Carroll Alley.

Read more about Doug Currie's new retroreflectors.

Watch an ABC News interview with Doug Currie.about the 50th anniversary of Apollo 11.

 

Gorshkov Receives Early Career Research Award

Alexey Gorshkov(Credit: J. Consoli/UMD)Adjunct Associate Professor Alexey Gorshkov has received a Presidential Early Career Award for Scientists and Engineers (PECASE). Gorshkov is a physicist at the National Institute of Standards and Technology Physical Measurement Laboratory, as well as a Fellow of the UMD Joint Quantum Institute and the Fellow of the Joint Center for Quantum Information and Computer Science.  

Read more: https://jqi.umd.edu/news/gorshkov-receives-early-career-research-award

Currie to Send Next Gen Retroreflectors to Moon

NGLR corner cube retroreflector seen next to Apollo era corner cube retroreflectorPhoto of NGLR corner cube retroreflector (L) next to an Apollo era version (R). Image credit Doug Currie 

In 1969, University of Maryland physicist Doug Currie helped design three still-in-use lunar instruments placed on the moon by Apollo 11, 14 and 15. Fifty years later, Currie is lead scientist for a just-approved NASA project to place next-generation versions of these instruments on the Moon.

Known as lunar retroreflectors, the instruments reflect laser pulses sent from Earth back to their exact origin point, allowing precise measurements of the Earth-moon distance; providing data to better understand aspects of the moon’s interior, including its liquid core; testing questions of fundamental physics, and allowing better mapping and navigation of the lunar surface.  

According to Currie, a senior research scientist and professor emeritus at the University of Maryland, the new UMD-led project can lead to improvements in all of these research areas: (1) because of the hundred fold improvement in the accuracy of individual ranges using the new retroreflectors and (2) by the increased accuracy produced by a larger number of reflectors with a wider lunar area covered by the network.  Currently, there are five retroreflectors on the moon: the three placed by Apollo missions and two French-designed instruments placed by Soviet lunar missions. The Currie-led proposal would add three Next Generation Retroreflectors for a total of eight lunar retroreflector arrays. 

“Our Next Generation Lunar Retroreflector is a 21st Century version of the instruments currently on the Moon. Each placement of a Next Generation lunar laser ranging array will greatly enhance the scientific and navigational capabilities of retroreflector network,” said Currie. “These additions improve the mapping and navigation capabilities important for NASA’s plans to return to the Moon and by 2028 establish a sustained human presence.” 

“And these also will significantly boost scientists’ ability to use the network to conduct important science, such as new tests of general relativity and other theories of gravity. Such studies may help us understand the nature of mysterious dark matter, which appears to constitute almost 27 percent of the Universe,” he said. 

According to a NASA release, the Next Generation Lunar Retroreflectors (NGLR) is one of 12 new science and technology payloads selected by the agency to help humans study the Moon and explore more of its surface as part of the NASA’s Artemis lunar program. The agency says the retroreflector and the other 11 investigations and demonstrations “will help the agency to send astronauts to the Moon by 2024 as a way to prepare to send humans to Mars for the first time.”

The selected investigations will go to the Moon on future flights through NASA's Commercial Lunar Payload Services (CLPS) project. According to the agency, the CLPS project allows rapid acquisition of lunar delivery services for payloads like these that advance capabilities for science, exploration, or commercial development of the Moon. 

NASA has selected the first three commercial Moon landing service providers that will deliver science and technology payloads to the lunar surface. According to Currie, the Next Generation Retroreflectors are not currently scheduled by NASA to be among the payloads carried on those three commercial Moon landings. “However, we believe because of the low size and weight of these retroreflectors, each mission could safely add one to their planned payloads for each of these commercial delivery missions,” he said. 

"The selected lunar payloads represent cutting-edge innovations, and will take advantage of early flights through our commercial services project,” said Thomas Zurbuchen, associate administrator of the agency's Science Mission Directorate in Washington. "Each demonstrates either a new science instrument or a technological innovation that supports scientific and human exploration objectives, and many have broader applications for Mars and beyond.”

The NGLR team consists of Currie as Principal Investigator and Simone Dell’Agnello of the Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Italy, as Co-I/Co-PI. Co-Investigators are Christopher Davis of the UMD Electrical and Computer Engineering Department; Giovanni Delle Monache, also of the Istituto Nazionale di Fisica Nucleare; James Williams of the Jet Propulsion Laboratory; and John Rzasa and Dennis Wellnitz of the UMD Department of Astronomy. Assistant Research Scientist Chensheng Wu, a member of Professor Chris Davis’ Maryland Optical Group, has also done crucial work on the design of the Next Generation Lunar Retroreflectors.

(Currie was interviewed by ABC News about the 50th anniversary of Apollo 11.)

Links for more information:

What Neil & Buzz Left on the Moon | NASA Science Mission Directorate

NASA Selects 12 New Lunar Science, Technology Investigations 

Dr. Douglas Currie next to the Orbit Beyond lander. Credit Udit Shah of Orbit Beyond

 UMD Professor Dr. Douglas Currie next to the Orbit Beyond lander. Credit Udit Shah of Orbit Beyond

Pictured (L-R) in 1969 UMD physicist Doug Currie, UT McDonald Observatory Director Harlan J. Smith, NASA Scientist-Astronaut Philip Chapman, UMD physicist Carroll Alley, & Scientist-Astronaut Don Lind

Pictured (L-R) in 1969 are University of Maryland (UMD) physicist Doug Currie, University of Texas (UT) McDonald Observatory Director Harlan J. Smith, NASA Scientist-Astronaut Philip Chapman, UMD Professor of Physics Carroll Alley and NASA Scientist-Astronaut Don L. Lind discussing use of the McDonald Lunar Laser Ranging Observatory (MLLRO) to send short laser pulses to the first Lunar Laser Ranging (LLR) Retroreflector left on the lunar surface by the Apollo 11 Astronauts. The MLLRO program was developed and initially operated by Professor Currie (then associate professor) with the support of the Godard Space Craft Center and the University of Texas. UMD’s Professor Alley was the Principle Investigator of the project to place LLRs on the moon to address lunar physics, gravitation, General Relativity and Earth physics.  The LLR Retroreflectors were designed and developed by a team that in addition to UMD physicists Alley and Currie, included scientists from universities and federal institutions that included Princeton University, NASA Goddard Space Craft Center, the National Bureau of Standards, Wesleyan University and the University of California. NASA’s Scientist-Astronaut program trained Ph.D. scientists & engineers as astronauts. Image courtesy Doug Currie.

Original story: https://umdrightnow.umd.edu/news/umd-physicist-apollo-experiment-gets-chance-send-next-gen-version-moon

Contact: This email address is being protected from spambots. You need JavaScript enabled to view it. 301-405-4679