Powered by Physics

Leonard Campanello (Ph.D. ’20, physics) spent the last three years on an ambitious mission—helping billions of Google Maps users find exactly what they’re looking for.

“I worked on the search function for Google Maps: you move the screen to a section of the map where you want to look for restaurants or hotels or things to do, add filters or attributes, like it has to be dog friendly or have a waterfront view,” Campanello explained. “And you want Google Maps to give you the best answer every time.”

As a Senior Data Scientist at Google, Campanello’s work brought science to the search process, applying the interdisciplinary physics training he received as a Ph.D. student in Professor Wolfgang Losert’s lab at the University of Maryland. Working on the Google Maps team, Campanello put his experience with models, algorithms, and analytics to work to better understand Maps users and optimize their search results.

“So, when you first issue a search, there's a list of places in a particular order. That order is carefully controlled,” Campanello explained. “We’ve proven that changing ranking algorithm has a material impact on the user's experience, and, at the end of the day, we need to know, did we have a net positive or a net negative effect on users? And we always strive to go in the net positive direction.”

As a scientist, Campanello has always been passionate about finding the stories hidden in data and building statistical models that capture the essence of the data, putting his physics skill set to work to answer a question or solve a problem.

“At the core of many problems in both physics and data science, I think we are trying to understand the data generating process so that we can better explain the fundamental physical phenomena driving what we see,” Campanello explained. “We observe that applying a force results in some change in a measurable quantity, whether the subject is a Google Maps user or a cell under the microscope. What's going on in the background that's fundamentally causing that change? How can we use this information to better understand our world? That’s what we want to find out.”

All in on physics

Campanello was a strong student who went all in on science and math since high school and earned a bachelor’s degree in physics from St. John’s University in 2013. Then, still unsure about how physics would translate into a future career, Campanello decided to pursue his Ph.D. at UMD, where he would have access to various options.

“I didn't know that what I wanted to do with enough certainty that I could commit to a graduate school that was kind of one dimensional,” Campanello recalled. “UMD had a massive physics department with a diversity of people in experiment and theory, whether it was condensed matter or high energy or biophysics or whatever, and that range of options was what ultimately kind of pulled me to UMD.”

After spending his first year working in condensed matter theory, a class with Physics Professor Michelle Girvan gave Campanello a whole new perspective.

“The class was nonlinear dynamics of extended systems and to this day it's probably the most influential class I ever took,” Campanello said. “Her problem-solving approach, including using graph theory and complex systems models, which I was never exposed to before, was eye-opening. We could actually create mathematical representations of all of these phenomena that we see in the world. And I was just wowed.”

At Girvan’s suggestion, Campanello joined Losert’s lab and began his Ph.D. research quantifying and modeling different dynamic processes, specifically complex interactions in biological systems.

“We already knew what some of the interactions were, so we knew that if we put this immune cell in the presence of some material, the immune cell would react in a specific way, which we could also measure under a microscope,” Campanello explained. “So given this set of biochemical information on the way these things behave short-term, medium-term and long-term, we said, how can we fit mathematical models to the microscope data and then use this to make inferences about this system as a whole?”

Opportunities, collaborations and simulations

Campanello took advantage of many opportunities at UMD, from teaching multiple MATLAB Boot Camps on image processing, computer vision and data analysis to coaching teams of data science students for the annual university-wide Data Challenge competition. Meanwhile, his continuing work in Losert’s lab exposed him to a world of possibilities.

“Wolfgang gave me and everyone in his lab the opportunity to work on so many different projects and collaborations with the National Institutes of Health and others, whether it was fundamental cell biology to projects on the interface of immunotherapies and autoimmune diseases to cancer, it's just crazy how much exposure we had,” Campanello noted. “He would help us identify opportunities to apply our analysis and modeling tools, give us guidance on the projects, and then let us to run with it. I really appreciated that.”

Campanello earned his Ph.D. in August 2020 and continued to do research at UMD for about six months before landing a job at Citibank in early 2021, applying his experience in modeling and analytics to consumer banking. 

Later that same year, he accepted a very different kind of opportunity at Google, working with the team that supports Google Maps to evaluate, advance and improve its ever-expanding search functions and, later, new capabilities, thanks to the addition of artificial intelligence.  

“The team is like 30 or so engineers, product managers, designers, user-experience researchers, and I was the one data scientist,” Campanello explained. “One of my primary responsibilities when I first joined was to create metrics or measurements that were absolute—meaning not open to interpretation—and I spent a lot of time doing research in that area to ensure that those measurements aligned with what we wanted for the user. What do we measure to know if we made the experience better?”

A new opportunity

In February 2025, after more than three years at Google, Campanello left to join Optiver, an Amsterdam-based global market maker that buys and sells securities to provide liquidity to markets. In this new position, he’ll again leverage his physics skill set, this time as a quantitative researcher.

“Part of my role will be to help improve the team's predictions in order to make better trading decisions. Can we make predictions right now about what will happen later today or later this hour or even just one minute from now?” Campanello explained. “If we can put numbers to these things and build models that accurately predict outcomes, then we can ultimately use those models to improve liquidity for all market participants.”

Fascinated by finance—and still inspired by the power of physics—Campanello looks forward to this next opportunity to grow.

“I've always had an interest in finance and what I'm looking forward to the most in this new role is the ability to really further my skill set,” Campanello said. “I want to get more exposure to what's happening at the bleeding edge of modeling and data science in quantitative finance. And I think this will be a good avenue for me to do that.”

Written by Leslie Miller

Kiyong Kim Elected as a Fellow of Optica

Kiyong Kim has been selected as a 2025 Optica Fellow for his pioneering contributions to the generation and understanding of terahertz radiation from strong laser field interactions with matter.  He is one of 121 members, from 27 countries, selected for their significant contributions to the advancement of optics and photonics through education, research, engineering, business leadership and sKiyong KimKiyong Kimervice.

Kim received his B.S. from Korea University and his Ph.D. from the University of Maryland. His graduate research focused on measuring ultrafast dynamics in the interaction of intense laser pulses with gases, atomic clusters, and plasmas. This work earned him the Marshall N. Rosenbluth Outstanding Doctoral Thesis Award from the American Physical Society.

Following his doctoral studies, Kim moved to Los Alamos National Laboratory as a Director’s Postdoctoral Fellow and while there received a Distinguished Performance Award. After accepting a position as an Assistant Professor at the University of Maryland in 2008, he received a DOE Early Career Research Award and an NSF Faculty Early Career Development Award. Kim also received the departmental Richard A. Ferrell Distinguished Faculty Fellowship in 2014.

From 2021 to 2022, Kim held appointments at Gwangju Institute of Science and Technology (GIST) and the Center for Relativistic Laser Science (CoReLS) at the Korean Institute for Basic Science, leading experiments on petawatt laser-driven electron acceleration, nonlinear Compton scattering of petawatt laser pulses and GeV electrons, and high-power terahertz generation.

With colleagues in physics and the Institute for Research in Electronics & Applied Physics (IREAP), he is co-PI on a $1.61M Major Research Instrumentation (MRI) award from the National Science Foundation (NSF) to upgrade high-power laser systems at UMD.

 

Maryland Gov. Wes Moore Announces $1B ‘Capital of Quantum’ Initiative Centered at UMD

aryland Gov. Wes Moore on January 14, 2025, joined University of Maryland President Darryll J. Pines and IonQ President and CEO Peter Chapman to announce a landmark public-private partnership to catalyze $1 billion in investments and position the state as a global leader in quantum information science and technology.

 Maryland Gov. Wes Moore speaks to the crowd at IonQ on January 14, 2025. Photo by Stephanie S. Cordle.

The “Capital of Quantum” initiative was introduced at an event highlighting Moore’s 2025 economic growth agenda held at IonQ, a leading quantum computing and networking firm founded on UMD research and headquartered in the university’s Discovery District.

“Quantum has the potential to transform every part of our economy and society, from national security to health care,” said Moore. “With extraordinary assets and partnerships, Maryland can—and should—lead in this new emerging sector, and we are moving forward with a clear strategy to make that vision a reality. Together, we will make Maryland the quantum capital of the world."

This strategic partnership aims to unlock more than $1 billion in investments—a combination of state funds, matching federal grants, private-sector investments and philanthropic contributions—over the next five years.

Moore last month signed an executive order that identified quantum computing as an industry that his and Lt. Gov. Aruna Miller’s administration will prioritize through state investment and support. His FY26 budget submission includes $27.5 million as the state’s initial investment toward the Capital of Quantum initiative, which is expected to spur more than $200 million in University of Maryland and partner investments to support academic, technical, workforce and ecosystem support.

The Moore-Miller administration has also committed continued funding for the construction of Zupnik Hall, a new $244 million state-of-the-art facility that includes more than $58 million in private investments and $185.4 million from the state, and which will add more quantum labs to the UMD campus.

“We are deeply grateful to Gov. Moore for his visionary investment in building a brighter future for Maryland’s economy,” said Pines. “He recognizes the immense potential of quantum technology and the possibilities we can explore if we work together to position our region as the global Capital of Quantum. We look forward to collaborating with the governor’s office and regional partners to ensure that this investment yields lasting benefits for all Marylanders.”

With the launch of the Capital of Quantum Initiative, the University of Maryland will move forward with plans to:

  • Recruit top quantum scientists and engineers from around the world to join the ranks of 200-plus UMD quantum faculty members—one of the largest concentrations in the world—to usher in a new wave of discovery and innovation.
  • Expand access to the National Quantum Laboratory (QLab), a unique UMD partnership with IonQ that provides students, researchers and entrepreneurs from around the world with hands-on access to quantum computers and scientists.
  • Hire test and evaluation experts to support quantum-focused projects and construct a new building for UMD’s Applied Research Laboratory for Intelligence and Security.
  • Create additional facilities to house an expanded Quantum Startup Foundry, a business accelerator based in UMD’s Discovery District that provides resources and support for entrepreneurs and startups bringing quantum technologies to market.
  • Launch education, outreach and training initiatives to include high school quantum curriculum, master’s and certificate programs, and workforce retraining opportunities.

Subject to the governor’s budget being approved, IonQ, an anchor partner in the initiative, will grow its corporate headquarters into a 100,000-square-foot facility with a data center, laboratories and office space within UMD’s Discovery District. IonQ also intends to double its corporate headquarters workforce to at least 250 people in the Maryland region over the next five years. Tuesday's announcement, once approved by the legislature, is expected to create high-paying and skilled jobs in diverse fields such as construction, software and hardware engineering, operations, applied physics, networking and more.

Investments in quantum computing are investments in Maryland's future, said Chapman.

“Through Gov. Moore’s strategic economic development initiative and proposed investment in quantum, he is not only supporting cutting-edge research and innovation but fostering economic growth and job creation in the state,” he said. “The governor's commitment is a testament to his vision for the pivotal role that quantum science will play in the state’s economic development and technological leadership. This investment will also enhance our collaboration with the University of Maryland to solidify the region as a global leader in quantum innovation.”

Original story: https://cmns.umd.edu/news-events/news/maryland-gov-wes-moore-announces-1-billion-capital-quantum

Connecting the Quantum Dots

Physics Ph.D. student Anantha Rao tests ways to build bigger and better quantum computers.

Anantha Rao grew up in Bengaluru, a city known as India’s tech hub due to its bustling startup culture and many international IT corporations. While many of Rao’s peers pursued engineering and related subjects, Rao’s love of science and knack for solving mathematical problems nudged him in a different direction.

“Everyone around me was an engineer or wanted to be one, and that is one thing I did not want to be,” Rao said. “I had this rebellious nature of going against the crowd, but I also wanted to solve fundamental problems in the basic sciences for the love of it—not for immediate applications.”

Rao discovered his calling after winning a high school physics competition. As a prize, he received a book written by Richard Feynman, a theoretical physicist who laid the groundwork for the field of quantum computing more than 40 years ago, and the field’s endless applications captivated Rao.

“Quantum computing has applications in studying how drug molecules bind to receptors or decrypting credit card transactions. You could study models of how the universe was created or see how the first molecule came into the picture,” Rao said. “Using ideas from quantum mechanics and computer science, you can also build better quantum computers, which is the problem that I’m looking at today.”

Now a Ph.D. student in the University of Maryland’s Department of Physics and Joint Center for Quantum Information and Computer Science (QuICS), Rao probes the fundamental physics that could power the next generation of quantum computers. He said he’s grateful for the chance to pursue that challenge in the “Capital of Quantum” at UMD.

“UMD is one of the top schools in the world for quantum information, especially theory,” Rao said. “Ten years ago, if someone told me that I'd be here now, I would feel like it is a dream.”

Tackling malaria with tech

Before moving to the United States, Rao was a full-time physics student and part-time entrepreneur in India. While Rao was enrolled in a combined bachelor’s and master’s program at the Indian Institute of Science Education and Research Pune, he cofounded a startup to develop diagnostic tools for diseases like malaria, a mosquito-borne infection that kills an estimated 608,000 people per year, according to the U.S. Centers for Disease Control and Prevention.

The software he developed, dubbed Deep Learning for Malaria Detection (DeleMa Detect), relied on artificial intelligence (AI) to search patients’ blood smear images for the signs and stages of malaria infection. This technology is packed into a small, portable device, reducing the need for lab tests that can be costly and inaccessible in many parts of the world.

Rao’s startup received a $50,000 grant and won top prize at the International Genetically Engineered Machine (iGEM) 2021 Startup Showcase. Rao has since moved on to other projects but said his early entrepreneurial experience taught him lessons about project leadership and collaboration that he applies to his research every day.

“I learned a lot about AI during my brief stint with entrepreneurship, and that’s something I've been working on lately—using AI to solve problems in physics,” Rao said. “My main motivation now is: What are the toughest problems out there and how can I solve them?Rao at TU Delft.Rao at TU Delft.

Since joining UMD’s physics Ph.D. program in 2023, he has been working to identify—and answer—those questions, one at a time.

The making of MAViS

One of Rao’s biggest ongoing projects is a collaboration between UMD, the National Institute of Standards and Technology and Delft University of Technology in the Netherlands. He has been leading the Modular Autonomous Virtualization System for Two-Dimensional Semiconductor Quantum Dot Arrays (MAViS) project, which aims to advance research that could lead to bigger and better quantum dot-based quantum computers.


Central to this concept are quantum dots, tiny semiconductor particles that serve as the building blocks of some quantum computers. These quantum computers operate at temperatures close to absolute zero, or −273.15 degrees Celsius—conditions that prompt the chips to engage in quantum mechanical behavior.

“The chips in your phone and chips in your laptop are made up of semiconductors, and similarly, we have quantum computers made out of semiconductors, except they operate at the coldest temperatures in the universe,” Rao explained. “The problem is you can't control them very well and you have a lot of unwanted interactions coming in.

To control each quantum dot, voltages must be applied to electrodes in their vicinity. Isolating this task can be tricky, though, because quantum dots are spaced just a few nanometers apart.

“What MAViS offers is a way to independently control each quantum dot in a very scalable and efficient way. This is a process called virtualization,” Rao explained. “Most importantly, it’s completely automatic. You press a button and MAViS solves a lot of equations faster than any human.”

By finding ways to offset unwanted interactions, which can introduce errors, researchers can make quantum computers run more efficiently and accurately. MAViS also uses “a little bit of AI” to enable corrections in real-time, Rao said.

Rao and his collaborators have seen encouraging results after testing MAViS on some of the world’s largest quantum dot devices in the Netherlands. MAViS successfully enabled researchers to operate and more efficiently control quantum dots, which in turn helps them control qubits—the fundamental building blocks of quantum computers.

Rao explained that one of the benefits of MAViS is that it works quickly and could free up time for researchers to focus on deeper tasks.

“We were able to do a task in about four hours that would have taken a month or two months of human effort,” Rao said. “Without MAViS, a lot of people with doctorate degrees would have needed to stare at computer screens and analyze complicated images to solve this problem. Now, researchers can automatically ‘virtualize’ their quantum dots and perform interesting experiments.”

Aside from his research with MAViS, Rao said his research on semiconductor qubits has also revealed some unusual physics, including elusive crystals made entirely of electrons.

“Another question in my research is: If you have these semiconductor quantum dots or quantum computers, what is some interesting physics that one could study in one dimension or two dimensions?” Rao said. “We've found evidence that exotic phases of matter—something called Wigner crystals—could be found in these devices.”

Giving back

As Rao dives deeper into quantum physics, he continually seeks ways to share his knowledge. MAViS and many of Rao’s past research projects involve open-source code so that the community at large can benefit.

“Since undergrad, I’ve wanted to give back to the community as I’ve learned things, and one way is through open-source projects and mentoring other students,” said Rao, who also worked as a teaching assistant and served on graduate student committees at UMD. “We hope to eventually make MAViS open source so that people anywhere in the world can build better, scalable quantum-dot quantum computers.”

After Rao graduates, he hopes to find a job that will enable him to keep tackling the big questions in quantum physics, whether that’s in academia or private industry.

“My pursuit is the best research and the best science that I can do today, and I believe that approach will give me the right opportunity in an academic lab or industry lab,” Rao said. “There are a lot of problems to solve in quantum, and I’m working toward solving them one at a time.”

Written by Emily Nunez; published March, 2025

From Space Science to Science Fiction

From her earliest years, Adeena Mignogna (B.S. ’97, physics; B.S. ’97, astronomy) always saw space in her future. It started with “Star Wars.”

“I have memories of watching the first ‘Star Wars’ movie with R2-D2 and C-3PO when I was about 6 years old and I really connected with the robots, wanting to know how we make this a reality,” she recalled. “For a while, I thought I was going to grow up and have my own company that would make humanoid robots, but the twist was, we were going to live and work on the moon. I could even picture my corner office and the view of the moon out the window.”Adeena Mignogna Adeena Mignogna

For Mignogna, that boundless imagination and her childhood fascination with space and science launched two successful and very different careers—one in aerospace as a mission architect at Northrop Grumman, developing software and systems for satellites, and the other as a science fiction writer, spinning stories of robots, androids and galactic adventures in her many popular books. For Mignogna, space science and science fiction turned out to be a perfect combination. 

“I think of it as kind of like a circular thing—science fiction feeds our imagination, which possibly inspires us to do things in science. And science feeds the science fiction,” Mignogna explained. “Working in the space industry is something that I always wanted to do, and I always wanted to write as well, so I’m glad that I'm really doing it.”

Drawn to science

The daughter of an engineer, Mignogna was always drawn to science and technology.

“I am my father's daughter,” she said. “My dad brought home computers, and I learned to program in BASIC, so it was kind of always obvious that I was always going to do something STEM-ish.” 

Inspired by the real-life missions of NASA’s space shuttle and the Magellan deep space probe and popular space dramas like “Star Wars” and “Star Trek,” Mignogna’s interest in aerospace blossomed into a full-on career plan. As she prepared to start college at the University of Maryland in the early ’90s, she began steering toward two majors.

“At first, I thought maybe I'm going to major in astronomy because I loved space and space exploration,” Mignogna recalled. “But my high school physics teacher had degrees in physics, and he had done a lot of different things. He had worked at Grumman during the Apollo era, he had done astronomy work, and so I was like, ‘Okay, if I major in physics, I could do space stuff, I could do anything.’ So in the end, I majored in both.”

Surprisingly—at least to her—at UMD, Mignogna discovered she loved physics.

“What do I love about physics? It's very fundamental to how everything works,” she explained. “I used to tease my friends in college who majored in other sciences that at the end of the day, they were all just studying other branches of physics—like math is just the tool we use to describe physics and chemistry is an offshoot of atomic physics and thermodynamics. And even though I was making fun, I do probably think there's some truth to that, and that might be why I like physics so much.”

Hands-on with satellites

By her sophomore year, Mignogna got her first hands-on experience with aerospace technology.  

“I wound up getting a job in the Space Physics Group, and they built instrumentation for satellites,” Mignogna explained. “I happened to learn about this at the right time when they were looking for students for a new mission, and I worked on that mission from day one till we turned the instrument over to [NASA’s] Goddard Space Flight Center, which was very cool.”

Working in that very hands-on lab assembling and sometimes reassembling science instruments that would eventually fly in space, Mignogna realized she was on the right path. 

“I was touching spaceflight hardware. I was touching stuff that was going into space,” she recalled. “It was really exciting.”

For Mignogna, working side by side with space scientists at UMD and getting hands-on training in skills like CAD drafting gave her the tools she needed to land her first job at NASA’s Goddard Space Flight Center.

Mignogna eventually landed at Orbital Sciences Corporation, which later became part of Northrop Grumman. For the next 16 years—earning her master’s degree in computer science from the Georgia Institute of Technology along the way—she expanded her space software and systems expertise and became a leader in Northrop’s satellite engineering program.

“On the software side, I worked on our command and control software. We have a software suite that controls the satellites, and what I loved was that it gave me exposure and insight into so many different kinds of satellites,” Mignogna said. “With systems engineering, I’m able to go through what we call the full life cycle of the mission. When NASA says, ‘Hey, we need a satellite that's going to do X, Y, Z,’ as a systems engineer, we’re the ones who break that down, and I’m kind of the end-to-end broader picture person in that process. The group that I'm closely associated with today is responsible for Cygnus, which is one of the resupply capsules to the International Space Station.”

From science to science fiction

Over the years, as Mignogna’s career reached new heights so did her work as a science fiction writer, a creative effort that started when she was in high school.

“My dad was a fan of Isaac Asimov and Robert Heinlein, so I knew they were engineers and scientists who also wrote science fiction, and that was something I always wanted to do,” Mignogna said. “At first, I didn't think I could write novels, I thought I could only do short stories. But around 2009, I figured out I could, and I’ve been doing it ever since.”

With titles like “Crazy Foolish Robots” and “Robots, Robots Everywhere,” Mignogna’s Robot Galaxy Series combines science fiction with humor, philosophy and, of course, robots. Her latest book “Lunar Logic” is set on the moon, 100 years from now.

“There are humanoid robots, built and manufactured on the moon, and they live on the moon. And they don't know anything about humans or why they're there,” Mignogna explained. “And then little things happen and they start to question what's going on and why they're there and eventually they kind of figure it all out.”

In Mignogna’s sci-fi worlds, the only limit is her own imagination, which is exactly what makes her work as a writer so enjoyable. 

“In my science fiction work, it’s my way or the highway,” she said. “I can write whatever I want, and I can make it however I want, and there's some satisfaction in that.”

For Mignogna, writing science fiction also provides an opportunity to advance another mission—to get more people interested and excited about science. In regular appearances at sci-fi conferences and other gatherings, Mignogna shares her passion for STEM, hoping to inspire the next generation of scientists—and everyone else.

“All this technology we have today comes from generations upon generations of fundamental science, technology, engineering, mathematics,” she explained, “so if we're going to do more things, we need people to go into these fields. “

As someone who’s always seen the importance of science in her own life, it’s a message she’s committed to sharing.

“You don't have to understand everything about science, but you can appreciate it,” Mignogna noted. “My hope is maybe if I can just connect with a few people indirectly or directly, I can make a difference.” 

 

Written by Leslie Miller