Malcolm Maas Named 2025-26 Churchill Scholar

University of Maryland senior Malcolm Maas has been awarded a 2025-26 Churchill Scholarship, joining only 15 other science, engineering and mathematics students nationwide in winning the prestigious honor. 

“We could not be prouder of how Malcolm Maas represents the University of Maryland to the world,” said Amitabh Varshney, dean of UMD’s College of Computer, Mathematical, and Natural Sciences. “Malcolm is a phenomenal student researcher who is driven to understand complex world problems like climate change and provide innovative solutions to them.”Malcolm Maas. Photo courtesy of same.Malcolm Maas. Photo courtesy of same.

Maas, who plans to graduate in three years with bachelor’s degrees in atmospheric and oceanic science (AOSC) and physics, will receive full funding to pursue a one-year master’s degree at the University of Cambridge’s Churchill College in the United Kingdom. The scholarship covers full tuition, a competitive stipend, travel costs and the chance to apply for a special research grant. 

Maas plans to pursue a Master of Philosophy degree in mathematics.

“I feel incredibly honored to have received this scholarship, and I’m very grateful to everyone who has supported me on my way here,” Maas said. “I’m excited for the opportunity to explore atmospheric dynamics further and to experience Cambridge next year.”

A total of 127 nominations this year came from 82 participating institutions. Ten UMD students have been nominated in the past seven years—and nine of them have been named Churchill Scholars.

“The University of Maryland’s remarkable success in racking up Churchill Scholarships testifies to the excellence of the research opportunities and mentorship our undergraduates receive,” said Francis DuVinage, director of UMD’s National Scholarships Office. “Malcolm Maas’ record of accomplishment as a third-year senior puts him in a class by himself.”

Since 2022, Maas has been working with AOSC Associate Professor Jonathan Poterjoy on fundamental challenges associated with environmental prediction and validation of atmospheric modeling systems. Specifically, he is quantifying the degree to which commonly used data assimilation methods shift models away from physically plausible solutions due to commonly adopted but incorrect assumptions. Maas presented their work in January 2025 at the American Meteorological Society Annual Meeting.

“Malcolm initiated our research collaboration on his own and I fully expect him to draft a first-author paper that we submit for publication this year,” Poterjoy said. “I feel that Malcolm can succeed in virtually any field, and I am pleased to see that he chose a research career in atmospheric science where his talents can have broad human impact.” 

Maas’ research interests and experiences extend beyond his work with Poterjoy and currently range from weather time scales to climate time scales. 

In summer 2024, Maas interned at the University of Chicago with Geophysical Sciences Professor Tiffany Shaw, where he assessed extreme heat and atmospheric circulation trends associated with Arctic sea ice loss in climate models and observational datasets. He presented this work at the American Geophysical Union’s Annual Meeting in 2024.

In summer 2023, Maas participated in the undergraduate summer intern program at the Lamont-Doherty Earth Observatory and worked on a project with Kostas Tsigaridis, a research scientist at Columbia University and the NASA Goddard Institute for Space Studies. Maas used a large dataset of Earth system model simulations to explore the effects of volcanoes on climate and atmospheric sulfur. He used machine learning to develop a tool that estimates where unidentified historical eruptions happened based on ice core data. Maas presented this work at the European Geosciences Union’s General Assembly in 2024 in Austria.

When Maas arrived at UMD in 2022, he joined a group of AOSC students installing and managing a micronet—a small-scale network of weather sensors—across the university’s campus. Five weather stations now provide minute-by-minute updates on the temperature, wind speed, pressure, dew point and rain rate on campus. Maas helped create the data collection system and user-friendly graphs to visualize the data, which are displayed on the UMD Weather website.

When the university and the Maryland Department of Emergency Management installed their first weather tower as part of the Maryland Mesonet in 2023, they asked Maas to quickly adapt his micronet visualization tools to work with the mesonet data. The 23 towers operational around the state—with more than 70 planned—help to advance localized weather prediction and ensure the safety of Maryland's residents and visitors.

For his Gemstone honors research project, Maas and 10 teammates have been working with UMD Mechanical Engineering Professor Johan Larsson to optimize the shape of marine propellers.

In high school, Maas helped build the first global tornado climatology database. He gathered and processed historical data for over 100,000 tornadoes that occurred around the world. The project’s website raked in 160,000 page views during its first year, and the work was published in the Bulletin of the American Meteorological Society in 2024.

Outside of class, Maas plays the pipe organ, represents the Ellicott Community on the Student Government Association, tutors with the Society of Physics Students and is a member of the Ballooning Club. He received a Barry M. Goldwater Scholarship, National Merit Scholarship, President’s Scholarship and the Department of Physics’ Angelo Bardasis Scholarship.

After his time at the University of Cambridge, Maas plans to pursue a Ph.D. in atmospheric science.

Zohreh Davoudi Awarded Presidential Early Career Award for Scientists and Engineers

Zohreh Davoudi, an associate professor of physics at the University of Maryland and Maryland Center for Fundamental Physics, received the Presidential Early Career Award for Scientists and Engineers. The award, which was established in 1996 to recognize young professionals who have demonstrated exceptional potential for leadership in their fields, is the highest honor the U.S. government bestows on early-career scientists and engineers.Zohreh Davoudi Zohreh Davoudi

Davoudi, who is also a Fellow of the Joint Center for Quantum Information and Computer Science and the Associate Director for Education at the NSF Quantum Leap Challenge Institute for Robust Quantum Simulation, is one of 398 scientists and engineers nationwide to be acknowledged by President Biden.

“I am truly honored by this recognition,” Davoudi says. “This award signifies that the President and the U.S. government appreciate the important role scientists and engineers play in advancing society. I am excited to continue exploring the frontiers of nuclear physics and quantum information science using advanced classical- and quantum-computational methods and to continue building a community of amazing junior and senior collaborators who share the same or similar goals.”

Davoudi’s research focuses on strongly interacting quantum systems and investigates how elementary particles, like quarks and gluons, come together and form the matter that makes up our world. Her work to understand the foundations of matter includes developing theoretical frameworks and applying cutting-edge tools, like quantum simulations, to studying problems in nuclear and high-energy physics. Ultimately, she hopes to describe the evolution of mater into steady states that occurred in the early universe and that happens at a smaller scale in the aftermath of high-energy particle collisions, like those in experiments at the Large Hadron Collider.

Davoudi has also been acknowledged by other awards, including a Simons Emmy Noether Faculty Research Fellowship, an Alfred P. Sloan Fellowship, a Department of Energy's Early Career Award and a Kenneth Wilson Award in Lattice Gauge Theory.

“Zohreh is an exceptionally agile physicist and an expert in nuclear theory,” says Steve Rolston, a professor and chair of the Department of Physics at the University of Maryland. “She has embraced the new world of quantum computing and is now a leader in figuring out how to use quantum computation to solve challenging nuclear and high-energy physics problems.”

Original story by Bailey Bedford

Next Gen Retroreflectors Launch to the Moon

On January 15, 2025, a precision prism reflector devised by UMD physicists once again headed to the moon, continuing a tradition begun in 1969, when the Apollo 11 crew positioned still-functioning Lunar Laser Ranging Retroreflectors (LLRR). The new lunar lander reached the Moon on March 2, 2025, and the next day successfully communicated with French Lunar Laser Ranging Observatory at Grasse, France. A single 10 cm diameter corner cube retroreflector. Credit: Doug CurrieA single 10 cm diameter corner cube retroreflector. Credit: Doug Currie

One of the physicists responsible for the original retroreflectors, Doug Currie, is the PI for the current version, Next Generation Lunar Retroreflectors (NGLR).  Using intense, brief lasers pulses, scientists on Earth will reflect light off the instrument, allowing measurements of the earth-moon distance to within 1 mm of accuracy. Such precision will allow better understanding of the moon’s liquid corA SpaceX Falcon 9 rocket carrying Firefly Aerospace’s Blue Ghost Mission One lander on January 15, 2024. Credit: NASA/Frank MichauxA SpaceX Falcon 9 rocket carrying Firefly Aerospace’s Blue Ghost Mission One lander on January 15, 2024. Credit: NASA/Frank Michauxe and of general relativity.

Currie’s proposal was accepted as part of NASA’s Commercial Lunar Payload Services (CLPS) project, utilizing partnerships with private industry to facilitate space launches.  Blue Ghost Mission 1 by Firefly Aerospace launched at 1:11 a.m. on January 15 aboard a SpaceX Falcon 9 rocket from NASA’ Kennedy Space Center in Florida, with NGLR-1 and nine other experiments. 

Currie’s storied career and the preparation for the NGLR were detailed in the September 2024 issue of Terp magazine.

He was a UMD Assistant Professor, working with LLRR PI Professor Carroll Alley, at the time of the historic first venture of humans to the moon. In 2019, he was interviewed on the 50th anniversary of Apollo 11, and was also selected for further work on retroreflectors. While the Apollo 11 retroreflectors were an array of small precision mirrors, the NGLR-1 is is a single 10 cm diameter corner cube retroreflector.

In addition to Currie, the UMD team on NGLR-1 included co-PI Drew Baden, deputy PI Dennis Wellnitz, Project Manager Ruth Chiang Carter and researchers Martin Peckerar, Chensheng Wu and Laila Wise.

Liftoff occurs at 43:01.

UMD Awarded $2 Million to Build a Quantum Biosensing Test Bed

Physics Professor Wolfgang Losert, Cell Biology and Molecular Genetics Professor Kan Cao, Chemistry and Biochemistry Professor John Fourkas, and Electrical and Computer Engineering Associate Professor Cheng Gong were awarded $2 million by the U.S. Air Force Office of Scientific Research to build a test bed to study how neural networks process information and develop new approaches to quantum computing and sensing inspired by the living brain. As principal investigator of this multidisciplinary and cross-institutional project, Losert will collaborate with both UMD faculty members as well as other academic and industry partners to better understand and recreate the brain’s unique capacity for learning and adapting quickly—abilities that far surpass traditional computer systems.Wolfgang LosertWolfgang Losert

“The human brain is remarkable in how efficiently it can learn and process information. For example, we only need to touch a hot stove once to learn not to do it again,” Losert explained. “But current artificial intelligence systems need more than just that. Typically, they require enormous amounts of data and computing power to learn new tasks through numerous rounds of trial and error.”

While traditional computers process information through individual components working in sequence, the brain distributes information across many networks of cells working in parallel. This fundamentally different approach allows for faster learning and adaptivity but with far less energy consumption than a computer. Losert and his team hope to identify the biological mechanisms behind this efficient method of learning in the brain.

For this research, a key focus is on astrocytes, a type of brain cell that makes up more than half of the cells in the human brain. Long considered mere support cells for neurons, astrocytes are now recognized as crucial to how the brain processes information. By engineering laboratory-based systems that incorporate both neurons and astrocytes, Losert’s team will closely observe how the two types of cells form living neural networks and react when exposed to various types of stress like ultrasound or electrical fields.

Recent discoveries by the neuroscientist on Losert’s team, assistant research scientist Kate O’Neill, and other researchers have already shown that astrocytes actively participate in brain signaling and may be essential to the brain’s ability to both learn and adapt to new situations quickly. Further observations could provide insights into how the brain maintains its performance under different conditions and may lead to more resilient forms of artificial intelligence (AI).

“Interestingly, one aspect that makes biocomputing so unique—the multitude of different signals in living neural networks, such as electro-magnetic, chemical and mechanical signals—also opens up another exciting aspect of our work. We can use living neural networks to test and improve quantum sensors for a range of biomedical applications,” said Losert, who is also an MPower Professor and interim associate dean for research in the College of Computer, Mathematical, and Natural Sciences with a joint appointment in the Institute for Physical Science and Technology.

Quantum sensors have the potential to measure minute physical changes like the presence of magnetic fields or electrochemical activity in cells in minimally invasive ways. Novel non-invasive biosensors could allow scientists and health care professionals to observe brain processes in patients that they couldn’t see before, potentially leading to better medical treatments and a more nuanced understanding of brain performance.

With this award, Losert’s team aims to bridge the gap between artificial and biological computing systems and help create new technologies that combine the best features of both.

“By understanding and replicating how brain cells work together, we hope to create more efficient and adaptable computing systems,” Losert said. “This project represents the start of a new paradigm in biocomputing that may help shape the future of both AI and neuroscience.”

###

The grant will also facilitate collaborations with researchers from the U.S. Air Force Research Library, the National Quantum Laboratory (QLab), Lockheed Martin, the National Research Council of Italy (CNR) and the University of Bari Aldo Moro.

Sasha Philippov Awarded 2024 Packard Fellowship

Assistant Professor Sasha Philippov has been named one of 20 members of the 2024 class of Packard Fellows for Science and Engineering. Sponsored by the David and Lucile Packard Foundation, the $875,000, five-year award for early-career researchers provides “flexible funding and the freedom to take risks and explore new frontiers in their fields of study,” according to the foundation.

Philippov is the seventh UMD faculty member—and the second from UMD’s Department of Physics—to receive this competitive award since its launch in 1988.

“I am delighted to see the recognition Sasha is receiving with the awarding of the Packard Fellowship,” said UMD Physics Chair Steven Rolston. “His outstanding work places our excellent plasma theory group at the center of multi-messenger astronomy, with multiple connections to efforts in physics and astronomy both within and beyond the university.”

Each year, the Packard Foundation invites 50 universities to nominate two faculty members for a Packard Fellowship, which is ultimately narrowed down to 20 recipients. Previous UMD awardees include Janice Reutt-Robey (chemistry and biochemistry) in 1990, William Pugh (computer science) in 1991, Victor Yakovenko (physics) in 1995, Victor Muñoz (formerly chemistry and biochemistry) and Sarah Tishkoff (formerly biology) in 2001, and Vedran Lekić (geology) in 2014.Sasha PhilippovSasha Philippov

Funding from the Packard Fellowship will enable Philippov to develop new computational codes capable of running on the world’s biggest supercomputers. In his research, Philippov uses computational astrophysics to study some of the most mysterious objects in the universe, including neutron stars and black holes. He is particularly interested in discovering how hot, magnetized gas—known as plasma—produces the light we see around exotic objects, such as the ring of light captured in the first image of a black hole in galaxy M87.

His new simulations would shed light on “how plasma shines around black holes,” as well as fast radio bursts—mysterious flashes of radio waves that are extremely bright and short-lived, lasting for mere milliseconds. Some of these extremely bright signals travel for billions of years before reaching Earth, but their exact origin remains an open question in astrophysics.

“Remarkable recent observational discoveries, including fast radio bursts and silhouettes of black holes, make it breathtaking and timely to work in this field,” Philippov said. “The common theoretical challenge to explaining stunning observations of neutron stars and black holes is understanding the behavior of relativistic plasma, the hot, magnetized, collisionless gas of charged particles producing the observed light under extreme conditions that we cannot explore on Earth.”

Simulations can complement images captured by the Event Horizon Telescope and other observatories, enabling researchers like Philippov to explore the physics of the highly energized electrons in plasma. He expressed gratitude to the Packard Foundation for supporting “high-risk, high-reward” research like the development of his new codes that could—if successful—yield much more realistic simulations.

“It could allow us to run three-dimensional kinetic simulations of black hole accretion, which we were not able to run before,” Philippov said.

Graduate students and postdoctoral researchers in Philippov’s lab will also play a hands-on role in developing this code, running and analyzing simulations, and constructing theoretical models of plasma phenomena.

Since joining UMD in 2022, Philippov has received a 2024 Sloan Research Fellowship, which provided him with $75,000 to study the production of neutrinos (weakly interacting particles) around black holes and magnetars (neutron stars with the strongest magnetic fields in the universe). He was also awarded a 2024 Thomas H. Stix Award for Outstanding Early Career Contributions to Plasma Physics Research for his “seminal contributions to the theory and simulation of collisionless astrophysical plasmas, especially compact objects.”

Although Philippov is excited to receive a Packard Fellowship, it is also bittersweet. Rolston and UMD Physics Professor Bill Dorland helped deliver the fellowship news to Philippov over a Zoom call last month, which ended up being the last time he and Dorland spoke.

Dorland, who was a mentor and friend to Philippov, died in September following a 20-year battle with chordoma, a rare cancer. In many ways, Philippov’s research will carry on Dorland’s legacy in computational plasma physics.

“Bill was a remarkable, kind and generous person. His passing left a giant void in all who had the privilege of knowing and working with him,” Philippov said. “He often mentioned that writing code is not just his job but a part of his very being. We will continue forging ahead in his memory.”

 

Original story by Emily C. Nunez: https://cmns.umd.edu/news-events/news/sasha-philippov-awarded-2024-packard-fellowship