Faculty, Staff, Student and Alumni Awards & Notes

We proudly recognize members of our community who recently garnered major honors, began new positions and more.

Faculty and Staff 
Students
Alumni
  • Adam Ehrenberg (Ph.D, '24) joined the Institute for Defense Analyses (IDA) as a Research Staff Member.
  • Chad Mitchell (Ph.D., '07) is a physicist at the Accelerator Technology & Applied Physics Division of Lawrence Berkeley National Lab.
  • Luke Sollitt (B.S., '97) is a planetary physicist for NASA.
  • C. V. Vishveshwara (Ph.D., '68) was recalled as Scientist of the Day on March 6, 2025.
Department News 

UMD Physicist Helps Sculpt Quantum Mechanics into Reality

In 2020, physicist Nicole Yunger Halpern received a rather unusual email out of the blue. Bruce Rosenbaum, a Massachusetts-based artist dubbed “the steampunk guru” by The Wall Street Journal, watched one of her lectures about quantum thermodynamics and was interested in collaborating with her. Rosenbaum saw something extraordinary in Yunger Halpern’s work—in terms of cutting-edge science and artistic possibility. 

For Yunger Halpern, who coined the term “quantum steampunk” while earning her Ph.D. in theoretical physics at the California Institute of Technology, it almost felt like scientific serendipity. 

“It’s been a privilege to interact with someone who is based in such a different world. I’m in physics, Bruce is in art. And yet, we both have a very strong shared interest in connecting the steam-powered world of the Industrial Revolution to today,” said Yunger Halpern, who is a theoretical physicist at the National Institute of Standards and Technology, a fellow of the Joint Center for Quantum Information and Computer Science, and an adjunct assistant professor in the Department of Physics and the Institute for Physical Science and Technology at the University of Maryland.Quantum steampunk sketch by Jim SuQuantum steampunk sketch by Jim Su

The unusual partnership kicked off a multi-year quest to craft a piece of art that could represent two very different worlds. For weeks, Yunger Halpern and Rosenbaum worked over weekend Zooms and emails to brainstorm before enlisting others to help bring their ideas to life. 

In late 2024, they finally created their masterpiece: an eight-inch diameter sculpture that marries steampunk (a popular genre that combines Victorian-era aesthetics like brass, gears and steam with modern technology) with quantum physics (a rapidly evolving field that deals with how things work at the tiniest possible scales). At these tiny levels, objects don’t behave the same way as they do in our everyday world—for example, things can exist in multiple states at once, like a coin that, in some ways, behaves as though it were both heads-up and tails-up simultaneously.

Inspired by these strange behaviors present in quantum physics, Yunger Halpern and Rosenbaum focused their project on the concept of quantum engines, devices that convert energy from one form to another. According to Yunger Halpern, even a single atom can function as an engine, transforming random microscopic motion into useful energy. 

“Our sculpture depicts an engine that can operate at the atomic scale to convert heat energy— which is random, the energy of particles alwaysQuantum steampunkQuantum steampunk jiggling around—into useful work. Work is coordinated energy, the kind that charges our computers and powers our factories,” Yunger Halpern explained. “Like the steam-powered tech of the Victorian era, this engine relies on thermodynamic properties to make its conversion. We wanted to bring those two themes from very different periods of history together.”

Linking quantum and art for all

Creating this visual representation of the invisible quantum world required an unusual team with varied skills. Rosenbaum brought in illustrator Jim Su for the initial designs and design engineering company Empire Group fabricated the sculpture. Rosenbaum and Yunger Halpern coordinated a careful balance between artistic vision and scientific accuracy at every stage of the project. Gradually, the team grew to include other UMD faculty and staff members, including Distinguished University Professors Christopher Jarzynski and William Phillips, Senior Faculty Specialist Daniel Serrano and Scientific Development Officer Alfredo Nava-Tudela. The UMD Quantum Startup Foundry and Caltech’s Institute for Quantum Information and Matter also pitched in.

The result was a metallic, partially 3D-printed sculpture measuring eight inches in diameter, an eclectic mashup of both quantum science principles and artistic sensibilities. 

“Everyone shared their expertise to create our final product, whether they offered scientific or artistic contributions,” Yunger Halpern said. “It’s something we are all very proud of.”

Supported by UMD’s Arts for All program, the sculpture will make its debut at the American Physical Society’s Global Physics Summit in March 2025 in honor of the United Nations’ Year of Quantum Science and Technology. After its premiere, the sculpture will head to Caltech before finding a home at UMD. 

But Yunger Halpern and her partners have ambitions beyond this first tabletop creation. They hope to create a much larger and grander version of their steampunk sculpture in the near future—complete with antique brasses, lasers, touchscreens and other high-tech interactive and moving elements.

“We have plans for our sculpture’s next iteration, but it’s still early in the fund-gathering process,” Yunger Halpern said. “For now, we’re focusing on sharing our tabletop quantum engine with the world and creating a tangible connection to what’s usually an invisible world. We hope that it’ll capture that sense of adventure in quantum thermodynamics for scientists and art enthusiasts alike.”

 

Written by Georgia Jiang

Zohreh Davoudi Awarded Presidential Early Career Award for Scientists and Engineers

Zohreh Davoudi, an associate professor of physics at the University of Maryland and Maryland Center for Fundamental Physics, received the Presidential Early Career Award for Scientists and Engineers. The award, which was established in 1996 to recognize young professionals who have demonstrated exceptional potential for leadership in their fields, is the highest honor the U.S. government bestows on early-career scientists and engineers.Zohreh Davoudi Zohreh Davoudi

Davoudi, who is also a Fellow of the Joint Center for Quantum Information and Computer Science and the Associate Director for Education at the NSF Quantum Leap Challenge Institute for Robust Quantum Simulation, is one of 398 scientists and engineers nationwide to be acknowledged by President Biden.

“I am truly honored by this recognition,” Davoudi says. “This award signifies that the President and the U.S. government appreciate the important role scientists and engineers play in advancing society. I am excited to continue exploring the frontiers of nuclear physics and quantum information science using advanced classical- and quantum-computational methods and to continue building a community of amazing junior and senior collaborators who share the same or similar goals.”

Davoudi’s research focuses on strongly interacting quantum systems and investigates how elementary particles, like quarks and gluons, come together and form the matter that makes up our world. Her work to understand the foundations of matter includes developing theoretical frameworks and applying cutting-edge tools, like quantum simulations, to studying problems in nuclear and high-energy physics. Ultimately, she hopes to describe the evolution of mater into steady states that occurred in the early universe and that happens at a smaller scale in the aftermath of high-energy particle collisions, like those in experiments at the Large Hadron Collider.

Davoudi has also been acknowledged by other awards, including a Simons Emmy Noether Faculty Research Fellowship, an Alfred P. Sloan Fellowship, a Department of Energy's Early Career Award and a Kenneth Wilson Award in Lattice Gauge Theory.

“Zohreh is an exceptionally agile physicist and an expert in nuclear theory,” says Steve Rolston, a professor and chair of the Department of Physics at the University of Maryland. “She has embraced the new world of quantum computing and is now a leader in figuring out how to use quantum computation to solve challenging nuclear and high-energy physics problems.”

Original story by Bailey Bedford

Next Gen Retroreflectors Launch to the Moon

On January 15, 2025, a precision prism reflector devised by UMD physicists once again headed to the moon, continuing a tradition begun in 1969, when the Apollo 11 crew positioned still-functioning Lunar Laser Ranging Retroreflectors (LLRR). The new lunar lander reached the Moon on March 2, 2025, and the next day successfully communicated with French Lunar Laser Ranging Observatory at Grasse, France. A single 10 cm diameter corner cube retroreflector. Credit: Doug CurrieA single 10 cm diameter corner cube retroreflector. Credit: Doug Currie

One of the physicists responsible for the original retroreflectors, Doug Currie, is the PI for the current version, Next Generation Lunar Retroreflectors (NGLR).  Using intense, brief lasers pulses, scientists on Earth will reflect light off the instrument, allowing measurements of the earth-moon distance to within 1 mm of accuracy. Such precision will allow better understanding of the moon’s liquid corA SpaceX Falcon 9 rocket carrying Firefly Aerospace’s Blue Ghost Mission One lander on January 15, 2024. Credit: NASA/Frank MichauxA SpaceX Falcon 9 rocket carrying Firefly Aerospace’s Blue Ghost Mission One lander on January 15, 2024. Credit: NASA/Frank Michauxe and of general relativity.

Currie’s proposal was accepted as part of NASA’s Commercial Lunar Payload Services (CLPS) project, utilizing partnerships with private industry to facilitate space launches.  Blue Ghost Mission 1 by Firefly Aerospace launched at 1:11 a.m. on January 15 aboard a SpaceX Falcon 9 rocket from NASA’ Kennedy Space Center in Florida, with NGLR-1 and nine other experiments. 

Currie’s storied career and the preparation for the NGLR were detailed in the September 2024 issue of Terp magazine.

He was a UMD Assistant Professor, working with LLRR PI Professor Carroll Alley, at the time of the historic first venture of humans to the moon. In 2019, he was interviewed on the 50th anniversary of Apollo 11, and was also selected for further work on retroreflectors. While the Apollo 11 retroreflectors were an array of small precision mirrors, the NGLR-1 is is a single 10 cm diameter corner cube retroreflector.

In addition to Currie, the UMD team on NGLR-1 included co-PI Drew Baden, deputy PI Dennis Wellnitz, Project Manager Ruth Chiang Carter and researchers Martin Peckerar, Chensheng Wu and Laila Wise.

Liftoff occurs at 43:01.

UMD Awarded $2 Million to Build a Quantum Biosensing Test Bed

Physics Professor Wolfgang Losert, Cell Biology and Molecular Genetics Professor Kan Cao, Chemistry and Biochemistry Professor John Fourkas, and Electrical and Computer Engineering Associate Professor Cheng Gong were awarded $2 million by the U.S. Air Force Office of Scientific Research to build a test bed to study how neural networks process information and develop new approaches to quantum computing and sensing inspired by the living brain. As principal investigator of this multidisciplinary and cross-institutional project, Losert will collaborate with both UMD faculty members as well as other academic and industry partners to better understand and recreate the brain’s unique capacity for learning and adapting quickly—abilities that far surpass traditional computer systems.Wolfgang LosertWolfgang Losert

“The human brain is remarkable in how efficiently it can learn and process information. For example, we only need to touch a hot stove once to learn not to do it again,” Losert explained. “But current artificial intelligence systems need more than just that. Typically, they require enormous amounts of data and computing power to learn new tasks through numerous rounds of trial and error.”

While traditional computers process information through individual components working in sequence, the brain distributes information across many networks of cells working in parallel. This fundamentally different approach allows for faster learning and adaptivity but with far less energy consumption than a computer. Losert and his team hope to identify the biological mechanisms behind this efficient method of learning in the brain.

For this research, a key focus is on astrocytes, a type of brain cell that makes up more than half of the cells in the human brain. Long considered mere support cells for neurons, astrocytes are now recognized as crucial to how the brain processes information. By engineering laboratory-based systems that incorporate both neurons and astrocytes, Losert’s team will closely observe how the two types of cells form living neural networks and react when exposed to various types of stress like ultrasound or electrical fields.

Recent discoveries by the neuroscientist on Losert’s team, assistant research scientist Kate O’Neill, and other researchers have already shown that astrocytes actively participate in brain signaling and may be essential to the brain’s ability to both learn and adapt to new situations quickly. Further observations could provide insights into how the brain maintains its performance under different conditions and may lead to more resilient forms of artificial intelligence (AI).

“Interestingly, one aspect that makes biocomputing so unique—the multitude of different signals in living neural networks, such as electro-magnetic, chemical and mechanical signals—also opens up another exciting aspect of our work. We can use living neural networks to test and improve quantum sensors for a range of biomedical applications,” said Losert, who is also an MPower Professor and interim associate dean for research in the College of Computer, Mathematical, and Natural Sciences with a joint appointment in the Institute for Physical Science and Technology.

Quantum sensors have the potential to measure minute physical changes like the presence of magnetic fields or electrochemical activity in cells in minimally invasive ways. Novel non-invasive biosensors could allow scientists and health care professionals to observe brain processes in patients that they couldn’t see before, potentially leading to better medical treatments and a more nuanced understanding of brain performance.

With this award, Losert’s team aims to bridge the gap between artificial and biological computing systems and help create new technologies that combine the best features of both.

“By understanding and replicating how brain cells work together, we hope to create more efficient and adaptable computing systems,” Losert said. “This project represents the start of a new paradigm in biocomputing that may help shape the future of both AI and neuroscience.”

###

The grant will also facilitate collaborations with researchers from the U.S. Air Force Research Library, the National Quantum Laboratory (QLab), Lockheed Martin, the National Research Council of Italy (CNR) and the University of Bari Aldo Moro.