Robert Lee Park, 1931 - 2020

Bob Park, a Professor Emeritus who was an author and outspoken advocate for science and rational thought, died on April 29, 2020. He was 89.

Park was born in Kansas City, Missouri and intended to pursue a career in law. When the Korean War intervened, his service as an electronics officer in the Air Force ignited a passion for physics. He enrolled in the University of Texas in 1956 and earned a BS in Physics in 1958 with High Honors. He stayed in Austin for a master’s degree and then accepted an Edgar Lewis Marston Fellowship at Brown University. He earned his Ph.D.  in physics in 1964.

He worked during the next decade for Sandia Laboratories before joining UMD in 1974. He served as Chair of the Department of Physics and Astronomy from 1978-1982.   In 1983, he opened a Washington office for the American Physical Society, and divided his time between the University and the APS until 2003. He retired in 2008, but continued writing an online column, What’s New, in which he deplored fallacies, particularly those allowed to affect public policy.

He wrote two books, Voodoo Science: the Road from Foolishness to Fraud and Superstition: Belief in the Age of Science and features in The New York Times, The Washington Post, and U.S. News and World Report. Park received the 1998 Joseph A. Burton Award of the American Physical Society for informing the public about physics and the 2008 Philip J. Klass Award of the National Capital Area Skeptics for promoting critical thinking. He often criticized the manned space program as risky and expensive, and repeatedly warned of overpopulation of this planet.

He was a Fellow of the American Association for the Advancement of Science, the American Physical Society and the American Vacuum Society.  

Park was nearing age 70 when, while jogging on a calm Sunday, he was nearly crushed when an oak tree toppled. As described in the Philadelphia Inquirer:

A pair of priests who happened upon him lying unconscious under the tree administered last rites, he later found out.

….a strange coincidence….took place the day he returned to the scene of his accident a year later.

"The story gets even more unbelievable," he said. He went to the exact place where he was struck, he said, and as he passed the broken-off trunk of the tree that nearly killed him, he passed two elderly men walking. "You know that tree fell on a guy last year," one of them said.

When Park said he was that man, one of the two began to tear up. It turned out they were the priests who found Park pinned under the tree and gave him last rites. They decided to throw him a champagne party to celebrate his survival.

Park is survived by his wife Gerry and sons Robert Jr. and Daniel.  The family asks that any memorial donations be directed to the Department of Physics: https://giving.umd.edu/giving/fund.php?name=physics-department-operating-fund

The archive of Park's What's New blog can be found here: https://web.archive.org/web/20140124195058/http://bobpark.physics.umd.edu/archives.html

 

Vladimir Manucharyan Receives Second Google Faculty Research Award

Associate Professor Vladimir Manucharyan has received a Google Faculty Research Award. It is the second consecutive year that Manucharyan, who is also a Fellow of the Joint Quantum Institute, and a member of the Quantum Materials Center, has earned the honor.

This year’s award will continue to support research by Manucharyan and his team into quantum computing hardware based on superconducting circuits. They are pursuing the development of special quantum bits—called fluxonium qubits—for use in a new generation of computers.

The Google Faculty Research Awards support research in diverse areas, such as health, human-computer interaction and quantum computing, with an unrestricted financial gift. According to Google’s announcement, the proposals are judged for merit and innovation as well as a connection to Google’s products, services and overall research philosophy. They selected only 150 of the 917 proposed projects to receive funding.

The technology being developed by Manucharyan’s team is not only of interest to companies like Google that are working to develop the next generation of quantum computing hardware; it also offers a chance to explore new physics. Successfully creating devices from many qubits may open the door to simulations that will elucidate quantum phenomena in systems like complex molecules, magnets and impurities in materials.

Story by Bailey Bedford: This email address is being protected from spambots. You need JavaScript enabled to view it.

Original story: https://jqi.umd.edu/news/manucharyan-receives-second-consecutive-google-faculty-research-award

 
 

Jarzynski Elected to the National Academy of Sciences

Distinguished University Professor Chris Jarzynski has been elected to the National Academy of Sciences.

Jarzynski is one of 120 new members and 26 international members elected in 2020, joining a select group of 2,403 scientists around the country—16 of whom hail from UMD's College of Computer, Mathematical, and Natural Sciences—recognized for their influential research and elected by their peers.

"I feel honored to have been elected to the National Academy of Sciences, and I am truly grateful for the support that I have received from colleagues, staff and students since I came to Maryland,” Jarzynski said.

Jarzynski is a statistical physicist and theoretical chemist who models the random motions of atoms and molecules using mathematics and statistics. Working at the boundary between chemistry and physics, Jarzynski studies how the laws of thermodynamics—originally developed to describe the operation of steam engines—apply to complex microscopic systems such as living cells and artificial nanoscale machines.

“Chris Jarzynski has effectively opened up a new field in statistical physics. Now, with precision, one can apply statistical mechanics not only to equilibrium states, but also to finite rate processes that carry a system from one state to another,” Distinguished University Professor Emeritus of IPST and National Academy of Sciences member Michael E. Fisher told Europhysics News in 2011. 

Jarzynski is well known for developing an equation to express the second law of thermodynamics for systems at the molecular scale. The equation is known as the Jarzynski equality. Published in the journal Physical Review Letters in 1997, the paper that introduced his equation has been cited in scientific literature more than 4,000 times.

When the 2018 Nobel Prize in physics was awarded for inventions in laser physics, the Nobel Committee cited testing the Jarzynski equality as an application of one of the winning inventions—optical tweezers. Optical tweezers use laser beams to manipulate extremely small objects such as biological molecules.

More recently, Jarzynski’s research has led to a new method for measuring “free energy”—the energy available to any system to perform useful work—in extremely small systems. This research is fundamental to new technologies and may lay the foundation for development of molecular- and quantum-scale machines.

A Fellow of the American Physical Society (APS) and a member of the American Academy of Arts and Sciences, Jarzynski received a 2020 Guggenheim Fellowship, 2020 Simons Fellowship and the APS’ 2019 Lars Onsager Prize, which recognizes outstanding research in theoretical statistical physics. He was also awarded a Fulbright Scholarship and the Raymond and Beverly Sackler Prize in the Physical Sciences. He serves on the editorial board for the Journal of Statistical Mechanics: Theory and Experiment and is an associate editor for the Journal of Statistical Physics.

Jarzynski earned his B.A. in physics from Princeton University and his Ph.D. in physics from the University of California, Berkeley. After a postdoctoral appointment at the Institute for Nuclear Theory in Seattle, he spent 10 years at Los Alamos National Laboratory. He has been on the faculty of the University of Maryland since 2006.

###

Media Relations Contact: Abby Robinson, 301-405-5845, This email address is being protected from spambots. You need JavaScript enabled to view it.

Original story here.

 

 

Quantum Gases Won’t Take the Heat

The quantum world blatantly defies intuitions that we’ve developed while living among relatively large things, like cars, pennies and dust motes. In the quantum world, tiny particles can maintain a special connection over any distance, pass through barriers and simultaneously travel down multiple paths.

A less widely known quantum behavior is dynamical localization, a phenomenon in which a quantum object stays at the same temperature despite a steady supply of energy—bucking the assumption that a cold object will always steal heat from a warmer object.

This assumption is one of the cornerstones of thermodynamics—the study of how heat moves around. The fact that dynamical localization defies this principle means that something unusual is happening in the quantum world—and that dynamical localization may be an excellent probe of where the quantum domain ends and traditional physics begins. Understanding how quantum systems maintain, or fail to maintain, quantum behavior is essential not only to our understanding of the universe but also to the practical development of quantum technologies.

“At some point, the quantum description of the world has to changeover to the classical description that we see, and it's believed that the way this happens is through interactions,” says UMD postdoctoral researcher Colin Rylands of the Joint Quantum Institute.UCSB labEquipment at the University of California, Santa Barbra for creating and manipulating quantum gases. It is being used to investigate the dynamical localization of interacting atoms, which is related to new work by JQI researchers. (Credit: Tony Mastres, UCSB)

Until now, dynamical localization has only been observed for single quantum objects, which has prevented it from contributing to attempts to pin down where the changeover occurs. To explore this issue, Rylands, together with Prof. Victor Galitski and other colleagues, investigated mathematical models to see if dynamical localization can still arise when many quantum particles interact. To reveal the physics, they had to craft models to account for various temperatures, interaction strengths and lengths of times. The team’s results, published in Physical Review Letters, suggest that dynamical localization can occur even when strong interactions are part of the picture.

“This result is an example of where a single quantum particle behaves completely differently from a classical particle, and then even with the addition of strong interactions the behavior still resembles that of the quantum particle rather than the classical,” says Rylands, who is the first author of the article.

A Quantum Merry-Go-Round

The result extends dynamical localization beyond its single-particle origins, into the regime of many interacting particles. But in order to visualize the effect, it’s still useful to start with a single particle. Often, that single particle is discussed in terms of a rotor, which you can picture as a playground merry-go-round (or anything else that spins in a circle). The energy of a rotor (and its temperature) is directly related to how fast it is spinning. And a rotor with a steady supply of energy—one that is given a regular “kick”—is a convenient way of visualizing the differences in the flow of energy in quantum and classical physics.

For example, imagine Hercules tirelessly swiping at a merry-go-round. Most of his swipes will speed it up, but occasionally a swipe will land poorly and slow it down. Under these (imaginary) conditions, a normal merry-go-round would spin faster and faster, building up more and more energy until vibrations finally shake the whole thing apart. This represents how a normal rotor, in theory, can heat up forever without hitting an energy limit.

In the quantum world, things go down differently. For a quantum merry-go-round each swipe doesn’t simply increase or decrease the speed. Instead, each swipe produces a quantum superposition over different speeds, representing the chance of finding the rotor spinning at different rates. It’s not until you make a measurement that a particular speed emerges from the quantum superposition caused by the preceding kicks.

Previous research, both theoretical and experimental, has shown that at first a quantum rotor doesn’t behave very differently from a normal rotor because of this distinction—on average a quantum merry-go-round will also have more energy after experiencing more kicks. But once a quantum rotor has been kicked enough, its speed tends to plateau. After a certain point, the persistent effort of our quantum Hercules fails to increase the quantum merry-go-round’s energy (on average).

This behavior is conceptually similar to another thermodynamics-defying quantum phenomenon called Anderson localization. Philip Anderson, one of the founders of condensed-matter physics, earned a Noble Prize for the discovery of the phenomenon. He and his colleagues explained how a quantum particle, like an electron, could become trapped despite many apparent opportunities to move. They explained that imperfections in the arrangement of atoms in a solid can lead to quantum interference among the paths available to a quantum particle, changing the likelihood of it taking each path. In Anderson localization, the chance of being on any path becomes almost zero, leaving the particle trapped in place.

Dynamical localization looks a lot like Anderson localization but instead of getting trapped at a particular position, a particle’s energy gets stuck. As a quantum object, a rotor’s energy and thus speed are restricted to a set of quantized values. These values form an abstract grid or lattice similar to the locations of atoms in a solid and can produce an interference among energy states similar to the interference among paths in physical space. The probabilities of the different possible energies, instead of the possible paths of a particle, interfere, and the energy and speed get stuck near a single value, despite ongoing kicks.

Exploring a New Quantum Playground

While Anderson localization provided researchers with a perspective to understand a single kicked quantum rotor, it left some ambiguity about what happens to many interacting rotors that can toss energy back and forth. A common expectation was that the extra interactions would allow normal heating by disrupting the quantum balance that limits the increase of energy.

Galitski and colleagues identified a one-dimensional system where they thought the expectation may not hold true. They chose an interacting one-dimensional Bose gas as their playground. In a Bose gas, particles zipping back and forth down a line play the part of the rotors spinning in place. The gas atoms follow the same basic principles as kicked rotors but are more practical to work with in a lab. In labs, lasers can be used to contain the gas and also to cool the atoms in the gas down to a low temperature, which is essential to ensuring a strong quantum behavior.

Once the team selected this playground, they explored mathematical models of the many interacting gas atoms. Exploring the gas at a variety of temperatures, interaction strengths and number of kicks required the team to switch between several different mathematical techniques to get a full picture. In the end their results combined to suggest that when a gas with strong interactions starts near zero temperature it can experience dynamical localization. The team named this phenomenon “many-body dynamical localization.”

"These results have important implications and fundamentally demonstrate our incomplete understanding of these systems," says Robert Konik, a coauthor of the paper and physicist at Brookhaven National Lab. "They also contain the seed of possible applications because systems that do not accept energy should be less sensitive to quantum decoherence effects and so might be useful for making quantum computers."

Experimental Support

Of course, a theoretical explanation is only half the puzzle; experimental confirmation is essential to knowing if a theory is on solid ground. Fortunately, an experiment on the opposite coast of the U.S. has been pursuing the same topic. Conversations with Galitski inspired David Weld, an associate physics professor at the University of California, Santa Barbra, to use his team’s experimental expertise to probe many-body dynamical localization.

“Usually it's not easy to convince an experimentalist to do an experiment based on theory,” says Galitski. “This case was kind of serendipitous, that David already had almost everything ready to go.”

Weld’s team is using a quantum gas of lithium atoms that is confined by lasers to create an experiment similar to the theoretical model Galitski’s team developed. (The main difference is that in the experiment the atoms move in three dimensions instead of just one.)

In the experiment, Weld and his team kick the atoms hundreds of times using laser pulses and repeatedly observe their fate. For different runs of the experiment they tuned the interaction strength of the atoms to different values.

“It's nice because we can go to a noninteracting regime quite perfectly, and that's something that it's pretty easy to calculate the behavior of,” says Weld. “And then we can continuously turn up the interaction and move into a regime that's more like what Victor and his coworkers are talking about in this latest paper. And we do observe localization, even in the presence of the strongest interactions that we can add to the system. That's been a surprise to me.”

Their preliminary results confirm the prediction that many-body dynamical localization can occur even when strong interactions are part of the picture. This opens new opportunities for researchers to try to pin down the boundary between the quantum and classical world.

“It's nice to be able to show something that people didn't expect and also for it to be experimentally relevant,” says Rylands.

Story by Bailey Bedford

In addition to Rylands, Galitski and Konik, former JQI graduate student Efim Rozenbaum, who is now a consultant with Boston Consulting Group, was also a co-author of the paper.

Research Contact: Colin Rylands This email address is being protected from spambots. You need JavaScript enabled to view it.
 
Media Contact: Bailey Bedford This email address is being protected from spambots. You need JavaScript enabled to view it.