Alicia Kollár Bridges Abstract Math with Realities of the Lab

Eugene Wigner, a Nobel Prize-winning mathematical physicist, once said, “The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve.”

Indeed, mathematics may seem abstract or even irrelevant until it’s used to describe the natural world around us. The reverse is occasionally also true: Physical realities, when brought to a mathematician’s attention, can inspire new questions and new discoveries. 

The research of Alicia Kollár, a Chesapeake Assistant Professor of Physics at the University of Maryland and a Fellow of the Joint Quantum Institute, embodies the give and take of this relationship between physics and mathematics. In her lab, she brings abstract theories to life and in turn collaborates on new theorems. She has forged a research program of manipulating light on a chip, coaxing the light into behaving as though it lives on the surface of a sphere, or a mathematical abstraction known as a hyperbolic surface. She also collaborates with mathematicians, furthering both the understanding of what these chips can do and their underlying mathematics. 

Alicia KollárAlicia KollárA direct collaboration with pure mathematicians is uncommon for a physicist, particularly an experimentalist. But Kollár is no stranger to mathematics. Raised by two mathematicians in Princeton, New Jersey, she was exposed to the discipline early on. However, Kollár said her parents didn’t pressure her to pursue mathematics growing up. 

“It never crossed my dad’s mind to try to force me to do what he loved,” Kollár said. “He considered that pointless, like ‘You should go into research for you, not for somebody else’s expectations.’” 

Her father, János Kollár, a professor of mathematics at Princeton, had a slightly different take. 

“She was always interested in science, so I didn’t need to apply any influence,” he said. “If she was only interested in rock music it might have been different.”

Free to pursue whatever she pleased (short of rock music), Kollár studied advanced math, but without much enthusiasm. 

“I was fortunate to be able to take quite a bit of college-level pure math as a high schooler,” she said. “And I would say that I think I was good at it, but I didn’t love it. I just kind of didn’t care.” 

What really caught Kollár’s attention was physics. Her high school physics teacher’s style really resonated with her. 

“He was a crusty old dude that loved Far Side cartoons,” she recalled. “And he wouldn’t put up with anybody that was too cool for school. He taught non-calculus physics, but he taught that you have to think about it—not ‘Here’s a method learn how to do it.’ We became really good friends, and I really liked thinking about how it works, you know, the physical intuition part of physics.”

She attended college at Princeton University, remaining in her hometown and further developing her fascination with physics. 

“I was sort of divided between math and physics as a freshman,” Kollár said. “But the more physics I took, I never looked back.”

During her first summer research experience, she was charged with taking apart a telescope mount for a cosmology group. That’s when she found her calling as an experimentalist.  

“I had a lot of fun that summer,” she said, smiling. “I ended up building a 1500-pound steel support structure. I was up to my eyeballs in machine oil and loving every minute of it.”

When applying to graduate schools, Kollár’s soon-to-be Ph.D. adviser Benjamin Lev, now an associate professor of physics and applied physics at Standford University, called her and convinced her to join his lab. He enticed her with the promise that, as an atomic and optical physicist, she could do both theory and experiment side by side. She joined his group at the University of Illinois at Urbana-Champaign, and, in her first year, moved with the whole team to Stanford.

Kollár’s Ph.D. work consisted of building a novel experimental apparatus from scratch, designed to trap atoms and photons together and allow them to influence each other in significant, controllable ways. The resulting experimental setup launched a new direction in its field, according to Lev. 

“From beginning to end, it was just an amazing graduate school experience, where you see something from the inception of the idea to actually showing that this new experimental technique can work,” Lev said. “And she was always a thought partner. We were thinking through the ideas, writing the equations on the board, working with theorists, and she was an equal thought partner on all of that.”

After graduate school, Kollár found herself returning to Princeton. “Princeton is a black hole,” she said. “You can never quite leave. Maybe it’s the Hotel California, you know?”

She became a postdoctoral researcher in the lab of Andrew Houck, a professor of electrical and computer engineering and a Fellow in the Princeton Center for Theoretical Science. Houck worked with coplanar waveguides—little paths printed on a circuit board that confine light in a tube the thickness of a human hair. These paths have become the setting of many of Kollár’s mathematical explorations. 

Kollár was in her office one day, playing around with one of these coplanar waveguide chips. This one contained a waveguide lattice—a repeating grid, one waveguide after the other. Lattices are a familiar concept to physicists from the study of metals, where atomic nuclei form repeating patterns, extending in all three directions.

Kollar’s mathematical training bubbled up, flooding her brain with ideas. She envisioned a similar lattice, but instead of one dimension it would extend in two. And, she realized, thanks to the properties of coplanar waveguides, there was a lot of flexibility in the ways she could shape these grids.  

Instead of being points, as in a conventional lattice of nuclei in a metal, the sites of this lattice were paths—lines that guide light around. And, Kollár could bend and stretch these lines however she wanted without changing the underlying physics, as long as the total length stayed the same. 

Kollár realized that by scrunching and stretching these waveguides, she could connect them to each other in ways that aren’t possible for normal lattices of points, at least not in the world we are used to. Instead, the waveguides would act as though they are on the surface of a sphere, or a mathematical construction known as a hyperbolic surface, where traditional ideas of parallel lines, triangles and navigation break down.  

A hyperbolic surface is, in a sense, the opposite of a sphere. So much so that a two-dimensional hyperbolic surface can’t exist within our three-dimensional world—basically, it doesn’t fit. Kollár said the best way to imagine hyperbolic space is with some of M. C. Escher’s pictures. 

Kollár and her collaborators successfully showed that coplanar waveguides can indeed form lattices that act as though they live on a hyperbolic surface. 

Kollár found that these hyperbolic lattices had some cool physics properties. In particular, she found that they gave rise to something called flat bands—paradoxical places where, regardless of how fast a particle is moving, its energy stays the same. These flat bands are thought to be behind some of the most intriguing unexplained physical effects, like the fractional quantum Hall effect, spin-​liquids, and even some cases of high-temperature superconductivity. 

“When I discovered these flat bands, I actually thought I made a mistake in my code,” Kollár said, “I turned around to my lab partner, and I was like, ‘I think I messed up but if I didn’t, this is really cool.’ And so at the time, we didn't understand where that was coming from. What we've since come to understand is that was really just the tip of the iceberg.”

To understand the full potential of this new technique, Kollár joined forces with Peter Sarnak, professor of mathematics at the Institute for Advanced Study at Princeton. This collaboration has proved extremely fruitful. Together, they showed that the flat bands were far from a mistake. In fact, they proved that the flat bands must exist in any hyperbolic lattice of the kind Kollár creates.

“There's been this constant feedback between very general math theorems leading to good examples and then good examples leading to new math theorems,” Kollár said.

Now, she is leading her own group at UMD and is working on coupling bits of quantum information—called qubits—to these exotic lattices. She has assembled a group of like-minded students, interested in addressing novel physics. Although there’s no way to know exactly what the future holds for Kollár, it’s fair to anticipate that she will continue to follow her nose to interesting and unexpected places. 

“I think what was special about Alicia is that she always had her own mind and she did not want to follow what others were doing,” her father, János, said. “It can be frustrating when you're a two-year-old, but I think in the long run if you can follow your own mind very seriously it can work out very well.”

Written by Dina Genkina

Creating an Inclusive Physics Community

When University of Maryland senior physics majors Ela Rockafellow and Kate Sturge entered the lecture hall of their honors math course freshman year, they quickly realized they were two of three women in a room of about 25 people.

All through high school, Rockafellow noticed how the number of women, gender minorities and students of color diminished in her advanced STEM classes, especially physics and math. When she asked her friends why their passion for science had faded, they told her they didn’t feel smart enough for the coursework—and often mentioned specific experiences or interactions that had discouraged them.

Studies show that since the ’90s, young women and men have earned about the same number of math and science high school credits, with women performing slightly better than men in these classes. But men are more likely to take the advanced placement exams to receive college credit. Seeing this themselves, Rockafellow and Sturge wondered how the dynamic could be changed so young members of underrepresented groups would feel empowered to pursue their goals in STEM.

“I think everyone in physics has felt like they’re not smart enough at one point or another,” said Rockafellow, a 2021 Goldwater Scholar. “But the compounded effect of society’s assumption that certain people aren’t as intelligent as others, especially in STEM spaces, can make it significantly more difficult to stay in the field.” 

Crafting a Curriculum

Rockafellow and Sturge, now co-presidents of the Society of Physics Students (SPS), decided to develop a class that would provide undergraduate students with the tools to counter society's assumptions about students in STEM. The idea for the course had initially been raised by attendees in an SPS town hall meeting in fall 2020. As SPS co-presidents, Rockafellow and Sturge decided to push the concept forward and create the course themselves in close collaboration with the director of education for the Department of Physics, Donna Hammer.

For months, Rockafellow and Sturge brainstormed the right course structure with Hammer, determining the necessary elements to make the course a reality. Together, they landed on a one-credit speaker series seminar to pilot the class, which became PHYS 298D: Diversity, Equity and Inclusion in Physics. 

“The idea was that from listening to a variety of speakers, students would gain a broader perspective, both validating the experience of minority students and increasing empathy and understanding of what minority members of the physics community go through,” Rockafellow explained. “Once we put together a rough outline for a curriculum, we sent it to everybody we knew who knew had experience in DEI work, and we got tons of feedback on how to make the course most effective.” 

To host this seminar, Rockafellow and Sturge first needed to find speakers. Starting with the American Physical Society’s climate report author list, they emailed hundreds of DEI experts to find the right mix of perspectives.

“We ended up getting a lot of really well-known people in the field to come speak just from asking,” Sturge said.

Speakers they chose ranged from Sandy Springs Friends School Head of School Rodney Glasgow to Harvard University Department of the History of Science Chair Evelynn Hammonds to UMD Counseling Center Research Director Yu-Wei Wang. Rockafellow and Sturge publicized the speaker series to SPS and physics department faculty and staff, expanding the reach of each lecture to the greater UMD physics community.

“The seminar format was a natural fit and an exciting student-driven curriculum endeavor,” Hammer said. “Ela and Kate have excellent leadership skills and true dedication to addressing and solving DEI issues.”

When freshman physics major Alejandro Escoto registered for PHYS 298D, he already had some understanding of the challenges underrepresented minorities have faced in physics. But he didn’t realize just how extensive those challenges were. 

“In this class, we explored in-depth why women and people of color have been excluded in physics, how it continues to happen and what each individual can do on a small scale to change that narrative,” Escoto said. “I left the class with a better understanding of how my own privileges play into my navigating of the field and how the things I say will end up affecting other people.”

Plotting the Future Course

For the course’s final project, students proposed projects to advance DEI efforts in their academic communities. For example, Escoto proposed a follow-up course to PHYS 298D on the history of science, focusing on the achievements of a wide range of scientists rather than just white men. 

“There’s a culture of there being one type of physicist,” Sturge said. “Usually, that physicist is white, male, cisgender, straight. That’s the box that you have to fit in. It’s our responsibility to use our privilege as white women to speak up and work toward a goal of dismantling that ideology in physics.” 

With the successful pilot behind them, Rockafellow and Sturge are looking for ways to grow the size of the course the next time it’s taught and they’re revising the PHYS 298D curriculum to meet the Understanding Plural Societies general education requirements. They also hope to continue their outreach work toward building a more diverse, inclusive physics community as they apply to graduate school.

“When you have a bunch of diverse minds together, science really flourishes,” Sturge said. “That’s why this work is important. We’re all working toward a better physics community.”

 Written by Katie Bemb

Jesse Anderson Retires Following 34-Year Career in the Department

As he finished his career in the Army with a posting at the old Walter Reed Hospital in Northwest Washington, Jesse James Anderson decided to enroll at the nearby University of Maryland in College Park in 1983. Ever industrious, he took two jobs: one as a carpenter in residential services, and another at the Stamp Student Union information desk. One day, in a Stamp elevator, a friend dared him to talk to a female student sharing the lift.  “And I did,” says Anderson, recalling the day he met his wife Danna.  “It worked out well for us.”

Danna Anderson studied in College Park for two years before transferring to the University of Maryland, Baltimore, to pursue her degree in medical technology. The couple moved to Charm City, where they have resided ever since. When she completed her practicum at Johns Hopkins University, Danna was immediately offered a staff position, and now supervises the Core Lab at JHU Hospital.

Despite the distance, Jesse Anderson chose to stick with UMD. He spotted and applied for a job in the physics machine shop, and was hired as a storekeeper under manager Frank Desrosier.  “I was studying electrical engineering and learning applied math, which made the shop stuff fun,” he said. “I was very interested in scientific methods and materials, and I learned a lot about metals.”  Over the course of a decade managing the Physics Material Store, he switched his studies to industrial technology, learning machining, drafting and lathe work, all of which he found intriguing and refreshing after his seven years in the Army, which were spent in somewhat monotonous finance and accounting work.Steve Rolston and Jesse Anderson at the 2018 staff awards.Steve Rolston and Jesse Anderson at the 2018 staff awards.

But military service had imparted meticulous record keeping habits that caught the attention of the physics purchasing manager, Camille Vogts. “I think she liked my paperwork,” chuckled Anderson. Vogts was often invited to vendor expos, which she regularly asked Anderson to attend. He recalls these outings as highlights of his UMD years, as they featured up-and-coming, whiz-bang technological developments in machining and laboratory devices. “Those shows were amazing to see,” Anderson recalls.

When an opening arose in the physics receiving office, personnel director Lorraine DeSalvo urged Anderson to apply. “I watched when he first arrived as the storekeeper in the shop,” said DeSalvo. “You just know when you see that sparkle in someone, that willingness and even eagerness to take on some new responsibilities.”

During his stint in receiving, Jesse and Danna enjoyed a four-week vacation, traveling to California to see Jesse’s brother. Upon his return, he found that business director Dean Kitchen had decided to expand his duties. “Dean said, ‘Well, if you’re good with receiving, you can likely handle purchasing, too,’” Anderson recalled.  And after the sudden death of purchasing manager Bob Dahms in 2013, Anderson’s purview expanded further.

From that time until his retirement in December 2021, Anderson faced a relentless workload that included the dizzying logistics of the 2014 move into the Physical Sciences Complex and the resultant need to coordinate purchasing, shipping and receiving for loading docks in separate buildings, ensuring a very busy life. And then, in March 2020, the campus abruptly ceased operations for all save a few staffers. Staying home was not an option for Anderson. During the COVID-19 shutdown, he continued to come to campus daily in support of the department.

“COVID was a lot,” Anderson said. “Managing the loading docks, sending up the mailed paychecks, dealing with the picked-up-in-person paychecks. Just a lot to manage.” Al Godinez, who staffed the Toll Building loading dock for many years, retired in December 2020. “Al urged me to consider retiring, too, but that would have been hard on the department,” Anderson said. And so he persevered for another year, until more normal operations were underway and a replacement could be hired.

For his efforts during the shutdown, Anderson received the first Lorraine DeSalvo Chair's Endowed Award for Outstanding Service, presented virtually by physics chair Steve Rolston in December, 2020.

“Jesse is amazing,” DeSalvo said. “He was always there, and has always gone above and beyond. I was so happy that he received the first DeSalvo Award.”  Anderson is the only physics employee to receive the department’s “outstanding service” staff award three times.

Reflecting upon his career, he reports no regrets, but a sense of appreciation. “It’s something to realize that the people you work with are the tops in their fields. It blows you away what people are doing,” Anderson said. “I enjoyed being familiar with the experiments, seeing the ingenuity involved. When you know the intent, helping with the supplying and the setting up and the installation is a thrill.”

Retirement is still a new sensation. Anderson finds the absence of a morning onslaught of anxious emails odd.  But he savored not having to face an icy I-95 when snow fell this winter. He enjoys seeing more of his daughter Jessica, who will soon finish her graduate degree in clinical psychology and already works as a social worker, doing home visits to assess children and to assist their parents. He is starting to digitize his vinyl record collection, and will soon enjoy a vacation with Danna to New Orleans. Also planned are trips to see family in Georgia, California and New York.Jesse Anderson and student employee Angela Madden at the 2005 staff awards.Jesse Anderson and student employee Angela Madden at the 2005 staff awards.

Throughout his 34 years in the department, Anderson was deeply appreciated for his even keel and reassuring demeanor. “We miss Jesse, because he was always such a tremendous person and colleague,” said Rolston. “I can’t recall ever seeing him frazzled or irritated in the least. But he richly deserves an excellent retirement. He did whatever was needed in the department, from filling dewars on the Toll loading dock to hand-delivering important mail. We can’t thank him enough.”

At a staff luncheon in December, Anderson’s colleagues recognized him with a Department of Physics purchase order for a happy and healthy retirement. Anderson expressed his gratitude and drew a laugh when noting, “I’ve spent more time with you than I have with anyone else in my life.” Anderson affirmed that he truly regards the physics department as family, meaning that at UMD he gained two: One begun in a momentous elevator ride, and one established through 34 years of camaraderie.   

S. James Gates, Jr. Endows New Summer Research Award

College Park Professor of Physics Sylvester James “Jim” Gates, Jr. joined the University of Maryland faculty in 1984, and as he rose to prominence in the fields of supersymmetry and supergravity—even being awarded the National Medal of Science in 2011—he never lost focus on his mission of educating the next generation of scientists.

Sylvester James Gates, Sr. and Charlie Anglin GatesSylvester James Gates, Sr. and Charlie Anglin Gates

Over 20 years ago, Jim launched the Summer Student Theoretical Physics Research Session (SSTPRS), which offers a summer long experience for students interested in conducting mathematical/theoretical physics research. Approximately 250 students have participated in the program since its inception, exploring areas of theoretical physics and publishing refereed journal articles on their research findings. SSTPRS also has allowed him to teach for fifty-one consecutive years. 

Now, Jim has created a new opportunity for undergraduates to conduct research by establishing the Sylvester James Gates, Sr. and Charlie Anglin Gates Endowed Summer Research Award. The award will support undergraduate students in physics or mathematics to pursue research during the summer break. 

Delilah Gates, Dianna Abney, Jim and Sylvester GatesDelilah Gates, Dianna Abney, Jim and Sylvester Gates

“I hope that the award, like the Summer Student Theoretical Physics Research Session, will help students gain acceptance to graduate school and enhance diversity in physics and mathematics, which is integral to advancing scientific discovery and innovation,” he said.

Jim named the award to honor the memory of his parents. When Charlie died of breast cancer at age 42, Gates, Sr. raised his four young children while serving full time in the U.S. Army. After more than 27 years of service, he retired as a sergeant major—the highest non-commissioned military officer rank. Gates, Sr. was one of the first African Americans to earn this position of authority. He went on to have two more careers in public education and as a union organizer. 

“I credit my father for emphasizing the importance of education and sparking my interest in science at a very young age,” he said.

Jim and his wife, Dianna Abney, sparked that same interest in their own children, twins Delilah Gates (B.S. ’15, physics and mathematics) and Sylvester Gates III (B.S. ’15, biological sciences). Both pursued undergraduate research while at UMD, and Delilah has since earned her Ph.D. in physics from Harvard University and is currently an associate research scholar at Princeton. Sylvester is currently a biological sciences Ph.D. student at UMD.

Jim, Dianna, Delilah and Sylvester see the scholarship as a way to encourage young people to do theoretical research, honor Jim’s parents, and to encourage other African American families to give to UMD.