Curious About the Cosmos

For the last four years, Aneesh Anandanatarajan has kept a running list of “big questions” about the universe and how it works. He started the list in high school but shows no signs of slowing down in his senior year as an astronomy and physics dual-degree student at the University of Maryland.Aneesh AnandanatarajanAneesh Anandanatarajan

“I am the type of person to ask questions until someone tells me to stop,” Anandanatarajan said. “I have about 40 questions on my list, and I like to return to them to see how I’ve progressed in terms of what I've learned and what I’m interested in.”

One of his early questions—how are electricity and magnetism related?—was written at a time when Anandanatarajan knew little about plasma astrophysics. Now, he’s conducting research in Physics Assistant Professor Sasha Philippov’s lab, where he uses physics-based simulations to study the turbulent environment and complex electromagnetic interactions around supermassive black holes.

While Anandanatarajan loves asking questions, he’s happiest sharing what he learned with others. As the tutoring chair for UMD’s Society of Physics Students, Anandanatarajan has become a physics ambassador while strengthening his knowledge of the subject.Aneesh Anandanatarajan and Othello GomesAneesh Anandanatarajan and Othello Gomes

“As a tutor and as the tutoring chair, it has been important to me to know physics well. I want to fully understand where these different concepts and equations come from,” Anandanatarajan said. “One of the things I'm most excited about is sharing physics with other people.”

Virtually hooked

Anandanatarajan has been interested in exotic objects like black holes and neutron stars since middle school, but he didn’t discover this passion in a lab or a planetarium. While watching YouTube one day, he found a channel with buzzy animated videos about popular science topics, including astronomy and physics. A few videos later, he was hooked.

“It captured my interest in more ways than I expected because I didn’t really know much about those subjects before middle school,” he said. “Over time, I watched more videos and realized that astronomy might be something I’d like to learn more about at an academic and professional level.”

Anandanatarajan said he was initially attracted to UMD’s “great astronomy program,” but he was thrilled to learn that he could add a second degree in physics by taking a few more classes. He’s enjoyed learning from professors who are exploring diverse fields of research.

“There are a lot of really great research topics here at Maryland and professors that are doing active research in those fields,” he said. “I’ve had a lot of great experiences with professors that want me to succeed and have pushed me to succeed.”

One of those professors is Philippov, whom Anandanatarajan started working with in spring 2024. Philippov studies high-energy astrophysics through a blend of theory and computer modeling with a focus on the physics of plasmas—hot, ionized gas surrounding black holes, neutron stars and other celestial objects. 

Anandanatarajan is using computer simulations to study how plasmas composed of electrons and positrons interact with other particles in the corona, an extremely hot and highly magnetized region that surrounds black holes, our sun and other space objects. Through a process called annihilation, these interactions can produce gamma rays, a type of radiation that astronomers can study to learn more about the universe.

“The corona is a very mysterious region that a lot of astronomers are very interested in probing,” Anandanatarajan said. “It’s essentially a breeding ground for electromagnetic activity, so we'd like to understand the phenomena that occur in that region because there are a lot of unknowns when it comes to our observations.”

Through this research, Anandanatarajan learned how to run Monte Carlo simulations that predict the probability of different outcomes—a skill that proved useful on other projects, like the up-and-coming study of high-energy particle collisions.

When interests collide

During the spring 2024 semester, a project in Physics Assistant Professor Christopher Palmer’s PHYS 441: “Introduction to Particle Physics” course let Anandanatarajan play an unexpected role in the next Large Hadron Collider (LHC).

During the course, Palmer teamed up with faculty at MIT to give students a front-row seat to discussions involving the Future Circular Collider (FCC), a proposed collider that would push the boundaries of particle physics beyond the capabilities of the LHC. The hope is that an upgraded collider could discover new particles or find evidence that deviates from the Standard Model of physics, which describes the fundamental forces that shape the universe.

Anandanatarajan and other students at UMD and MIT analyzed Monte Carlo simulations to determine how to precisely measure novel processes produced in electron-positron collisions from the FCCee accelerator, the first stage of the FCC.

“Essentially what we wanted to do was characterize different kinematic properties, such as the energy, momentum and angles at which these produced particles came out,” Anandanatarajan explained.

In March, this culminated in a visit to the second annual FCC workshop, where students presented their projects and spoke with leaders in the field.

“We learned a lot about how high-energy physics is conducted and the planning that is needed for a mega collider that may or may not be built 30 years from now,” Anandanatarajan said. “We talked to many different experts in the field who were thankfully friendly and willing to talk to undergrads about these types of topics.”

This experience initially felt disparate from his other projects, but Anandanatarajan realized that electron-positron collisions and large Monte Carlo simulations play an important role in astrophysics, too. After he earns his undergraduate degree, Anandanatarajan plans to continue studying astrophysics in a Ph.D. program that will allow him to keep asking—and answering—those big questions he’s carried with him for years.

Until then, he looks forward to spending his senior year sharing his passion with anyone willing to listen. He has several ideas for the Society of Physics Students—including a possible YouTube channel, harking back to his initial inspiration—to get students more engaged in physics.

“Making people excited about physics has always been a passion of mine,” he said. “I feel like I enjoy physics more than the average person, so I want to share those feelings with others and show them all of the cool things that physics has to offer.”

Faculty, Staff, Student and Alumni Awards & Notes

We proudly recognize members of our community who recently garnered major honors, began new positions and more.

 Faculty and Staff 
Students
Alumni
Department News 

Leaning into Lidar

Swarnav Banik’s (Ph.D. ’21, physics) parents were visiting from India when they saw a strange-looking car on a San Francisco street that stopped them in their tracks.

“They asked what it was, and I said, ‘That’s a Waymo car. It has no driver in it. It drives itself.’ And they were so surprised,” Banik recalled. “They kept looking at the Waymo and taking pictures of it, they were so excited. And I said, ‘Yes, this technology is indeed exciting. Until a few years ago, we used to think of this as some future technology—now this is what I do.”Swarnav Banik Swarnav Banik

And what Banik does might just be the future of transportation. Since 2022, he’s been working on sensing technology for the next generation of autonomous vehicles.  He first worked as a senior photonics engineer at Aurora Innovation, a company that’s developing self-driving systems for semitrucks and other commercial vehicles; now he’s at Aeva, a Silicon Valley firm developing sensing and perception tools for driverless cars and industrial automation. 

In his work, Banik develops next-generation sensors that use lidar—light detection and ranging —technology to help autonomous vehicles “see” objects on the road ahead and safely avoid them.

“A typical autonomous vehicle has three kinds of sensors—a radar, a camera and a lidar,” Banik explained. “I have been working on frequency-modulated continuous wave lidar (FMCW), which has several advantages over the more commonly used time-of-flight lidar. Unlike time-of-flight lidars, FMCW lidar detects both the position and velocity of obstacles. This is extremely useful for highway driving where maneuvering decisions need to be made quickly.”

For Banik, working with lidar technology means putting his physics skill set to work in a way he never expected.

“Lidar is an interesting application of lasers. It uses many of the optical spectroscopy principles that I used as an atomic physics grad student, but I never thought I’d be doing anything like this,” he reflected. “It just kind of happened and I’m happy about it. I really like what I’m doing.”

The path to physics

Growing up in Mumbai, India, Banik was a curious and enthusiastic student, especially when he started taking high school physics.

“I really loved physics. It felt very logical, and I had a lot of fun solving physics problems,” he said. “In a way, it was like applying mathematics to real-world problems, and I believe that’s what interested me.”

In 2009, Banik entered the Indian Institute of Technology Delhi as an engineering physics major. As a sophomore, he landed an internship developing mathematical models for a cosmic ray experiment at the Tata Institute of Fundamental Research in Mumbai. Then as a junior, he interned in the U.S. at Fermilab, near Chicago, where he tackled the challenges of avalanche silicon photodiodes that are used for detecting high-energy particles.

“The idea was that these photodiodes would eventually be used in the Large Hadron Collider particle accelerator, and I was involved in the development of the photodiodes,” Banik explained. “I wasn’t married to particle physics back then, but I enjoyed designing engineering solutions from first principles: I learned how to break complex problems into smaller pieces and tackle them one by one, and I really appreciated that.”

After earning his undergraduate degree in India in 2013, Banik headed back to the U.S. to begin graduate school at the University of Maryland, where he hoped to find his niche in physics.

The thrill of research

“The Department of Physics at Maryland does very good research in almost every possible field of physics,” Banik explained. “I thought it would be a great place to get exposure and decide what I want to do.”

Banik connected with as many grad students and faculty members as he could, exploring everything from plasma physics and condensed matter theory to atomic, molecular, and optical physics and quantum information. Atomic physics won him over.

“The quantum computing applications that come out of atomic physics experiments were very exciting to me,” he recalled. “I saw grad students building atomic physics labs and I saw all the skills they had developed just by doing this research. I was impressed, and I wanted to be one of them.”

Working in UMD’s Joint Quantum Institute (JQI), Banik’s Ph.D. research focused on simulating cosmological inflation, such as the expansion of the universe, using a Bose-Einstein condensate.

"We start with sodium atoms and cool them to ultra-low temperatures of less than 100 nanokelvin using techniques like laser and evaporative cooling," Banik explained. "These atoms then form a quantum degenerate gas known as a Bose-Einstein condensate, and we use this as a platform to simulate phenomena like cosmological Hubble friction, which is impossible to study experimentally due to the massive scale of the universe."

For Banik, the thrill of successfully simulating Hubble friction—and working in the collaborative culture of JQI—energized and inspired him.

“I was working with Gretchen Campbell and Ian Spielman and they were really great,” he said. “The whole JQI ecosystem is so supportive. There are so many people you can rely on—the professors, the older grad students, the postdocs, we were constantly exchanging equipment and ideas.”

Lidar on a chip

After earning his Ph.D. in 2021, Banik charted a course toward industry.  And he saw a unique opportunity at Aurora. 

“Aurora makes autonomous freight-hauling trucks, and they were looking for someone with a physics mindset, someone who would approach solving problems from first principles,” Banik said. “Most of the people there were electrical engineers, and they needed someone who could think about next-gen architecture because they were building a newer version of the lidar sensor for fleets of vehicles.” 

Over the next two years, Banik and his colleagues met that challenge, developing and patenting a cost-saving, integrated, chip-based lidar sensor system.

“Making a lidar sensor is not that tricky—but the company wanted to mass-produce them,” Banik explained. “These chip-based sensors have the same capability as the traditional bulk optic sensors, but they could be produced more cheaply and in volume, meaning more lidars for more trucks.”

When Banik took a test ride in an autonomous semitruck equipped with lidar and other sensors (and a human “operator” on board as a backup), he got a whole new perspective on what driverless technology could do.

“It was fascinating—I was in this big self-driving truck, not a simulation, this was the real thing,” he recalled. “It was highway driving, there was heavy traffic, and the operator wasn’t doing anything. He was just sitting there while the truck drove itself. And then when we weren’t on the highway, there was a pedestrian who came all of a sudden, and the truck stopped for the pedestrian—just like that. The truck did exactly what it was supposed to do.”

Earlier this year, Banik moved on from Aurora to become a senior photonics module engineer at Aeva, where he continues to work with lidar and sensing modules, advancing autonomous driving technology that could be on the road in the not-too-distant future. 

“I feel that, if not today, then in a few years this technology is pretty much within the reach of the companies that are trying to do it,” Banik explained. “Aurora will be launching its self-driving trucks commercially by the end of this year, and I know of some other companies that are also doing that at the end of this year or early next year.”

There are still plenty of challenges on the road ahead, but Banik wouldn’t want to be anywhere else.

“It feels very good to be making an impact,” Banik said. “That’s the thing that motivates you and keeps you going. It’s pretty exciting.”

Catching Cosmic Waves

University of Maryland (UMD) physics Ph.D. student Max Trevor found himself at a crossroads in 2016. Long fascinated by black holes, Trevor studied the enigmatic objects using X-ray astronomy as an undergraduate at the University of Maryland, Baltimore County (UMBC). But as his graduation date grew closer, Trevor wondered how he could take his passion to the next level. 

A groundbreaking announcement helped Trevor make a decision. In February 2016, scientists working on the Laser Interferometer Gravitational-Wave Observatory (LIGO) project announced that for the first time in history, they detected gravitational waves—ripples in spacetime caused by some of the most violent events in the universe, waves that were caused by two black holes colliding with each other billions of light-years away. For Trevor and many other researchers, the Nobel Prize-winning discovery opened up an entirely new way of observing the universe.

“I had some experience with X-rays at UMBC, which I enjoyed,” Trevor recalled. “But hearing about LIGO’s success made me think that gravitational astronomy was going to be the new hot research area for high-energy astrophysics. At that moment, I knew I had to jump in no matter what.”

Knowing that he wanted to pursue gravitational wave research and LIGO science as a graduate student, Trevor found his perfect match at UMD. Attracted by the Department of Physics’ decades-long legacy of gravitational wave research and its continued influence on the field, he joined the lab of Peter Shawhan—a professor of physics and LIGO principal investigator—in spring 2020. Together, they’re working to detect gravitational waves and improve the quality of the data collected by LIGO to ensure its accuracy for all researchers in the community.  

Shawhan, whose work with LIGO stretches back to his time as a postdoctoral researcher at Caltech in 1999, says that the project has come a long way since the announcement of its initial success.

“Today we can laugh and say, ‘Oh, it’s just another regular binary black hole merger,’ but it was a really big deal the first time we were able to detect one,” Shawhan said. “We’re now in the middle of LIGO’s fourth observational run. Thanks to decades of hard work from across the globe and our efforts here at UMD, we can now observe these events every couple of days.” 

Filtering out the noise, keeping the community connected

Detecting gravitational waves in space is no easy task, even now. To do its job, LIGO requires incredibly sensitive instruments called interferometers, which use laser beams to measure minute changes in distance caused by passing gravitational waves. There are currently two interferometers in the United States—one in Louisiana and another in Washington state—and it’s Trevor’s job to weed through the flood of data these interferometers produce, searching for the telltale signs of a gravitational wave event. 

“I write code that performs data analysis in real time. It basically asks, ‘Is this a gravitational wave, yes or no?’ and it tries to match the data points with known profiles of gravitational waves,” Trevor explained. “After that’s done, it repeats the process with the next batch. All this happens in seconds.”

Although interferometers can capture faint signals that come with faraway colliding neutron stars or merging black holes, the instruments are also prone to catching other waves that may not be involved with the cosmos at all—like nearby earthquakes, moving trains or even local weather. Trevor uses tools like machine learning to correlate these irrelevant waves with potential sources and adjusts the detection code to avoid them. According to Shawhan, Trevor’s work is paving the way for upgrades to the LIGO system for future observational runs. 

“Max’s improvements to the algorithms are especially valuable for detecting signals that are particularly challenging to identify,” Shawhan said. “He’s made it easier to separate out irrelevant noise from signals that are made by massive black holes.” 

Trevor is also a major part of the effort to keep astronomers around the world in touch with LIGO’s latest findings. He’s in charge of operating and running a rapid alert software package called Python search for Compact Binary Coalescences (PyCBC). Any time a potential gravitational wave is detected in space, PyCBC feeds information into a system that sends out rapid alerts to astronomers around the world through NASA’s General Coordinates Network—giving them a chance to turn their telescopes to the right part of the sky and potentially catch any visible light from explosive cosmic events. Thanks in part to Trevor’s efforts, PyCBC sends out an alert about once every three days on average, helping to produce over 120 alerts total since LIGO’s current run began.  GCN diagramGCN diagram

“The data is collected, analyzed and sent out really quickly,” Trevor said. “The astronomy community can get preliminary alerts about a possible event within 30 seconds. Timeliness is essential so that scientists can observe the event right as it’s happening and we can form a better understanding of phenomena like black holes and neutron star mergers. It’s really fulfilling for me to play a part in keeping everyone connected.” 

Since joining Shawhan’s lab, Trevor has made significant contributions to LIGO, co-authoring over 30 highly cited papers on the data gathered by the system. As he nears the completion of his doctoral program at UMD, Trevor hopes to continue his work. He believes that his projects, specifically those focused on identifying extraneous noise sources, will play a role in optimizing the next version of LIGO and bring scientists closer to understanding the world beyond Earth. 

“This current observational run is projected to end in June 2025, which is when LIGO will undergo crucial upgrades and changes to make it even more sensitive than previous iterations,” Trevor said. “I’d like to keep doing my part in helping the project stay alive—and supporting the community that seeks to explain how our universe works.”  

In Memoriam

It is with much sadness that the Department of Physics announces the passing of several members of our community.

  • Melanie Knouse Cline, a coordinator in the Maryland Center for Fundamental Physics (MCFP), died on June 3, 2024.
  • Robert Dewar, a former postdoctoral associate, died on April 5, 2024.
  • Robert Goldstein, an alumnus, died on Sept. 4, 2024.
  • Charles Hussar, an alumnus and donor, died on March 30, 2024.
  • Verne Kauppe (B.S., '71), who worked in multisensor and microwave remote sensing, died on September 8, 2024.
  • William Kuperman (Ph.D., '72), former Director of the Marine Physical Laboratory of the Scripps Institution of Oceanography,  died on June 30, 2024. 
  • Ernest Madsen (B.S. and M.S.), a medical physicist at the University of Wisconsin, died on August 24, 2024.
  • Martin Vol Moody, an experimentalist working on gravitation, died on August 18, 2024.  
  • Robert L. Parker, (Ph.D.,'60) who worked in metallurgy for the U.S. government, died on April 21, 2024.
  • Joseph Perez (Ph,D., '68), former head of the Auburn University Physics Department, died on July 25, 2024.
  • Edward "Joe" Redish, an acclaimed researcher and Professor Emeritus, died on August 24, 2024.
  • Paul Richardson, a physicist with the U.S. Bureau of Mines, died on May 29, 2024.