CMTC to kick off annual research symposium

cmtc pictureThis week, the Condensed Matter Theory Center hosts its annual symposium, which brings attendees up to speed on the Center's latest research interests. The symposium, which features 11 technical talks spanning two days, begins Dec. 7 and is open to all.

This year's talks cover a range of topics in condensed matter theory, reflecting the diverse interests of CMTC faculty, postdocs and students. These include Weyl semimetals, many-body localization and Majorana fermions—particles that played a leading role in a workshop that CMTC hosted at the end of October.

"CMTC wants to work on the most exciting frontier topics in the field because that's what excites and enthuses the young researchers," says Sankar Das Sarma, the director of CMTC and a JQI Fellow. CMTC, which has held a symposium every year since 2006, invites all of its members to present their latest work, provided that the results have been written up in a research paper.

The symposium follows on the heels of CMTC's October Majorana workshop, which brought together nearly 40 experts on the physics of certain semiconductor-superconductor junctions. Attendees critically examined the experimental evidence for Majorana quasiparticles at the ends of nanowires in such systems, concluding that no other explanation of experimental results seems consistent. The quasiparticles predicted to live in these systems could be useful for building a future quantum computer. Das Sarma says that the workshop was a success and hopes that CMTC can host a similar meeting in future years.

Related articles from the Joint Quantum Institute:

A warm welcome for Weyl physics
Disorder grants a memory to quantum spins
Novel gate may enhance power of Majorana-based quantum computers

Scientists are close to building a quantum computer that can beat a conventional one

It's a Sunday afternoon in September, and the two co-founders of ionQ, a quantum computing startup, are meeting for a strategy session with their first hire: their new CEO. Sitting in comfy leather chairs in the Physical Sciences Complex at the University of Maryland (UMD) in College Park, the two founders are experiencing a touch of culture clash. Lifelong research scientists, UMD physicist Chris Monroe and Jungsang Kim, an electrical engineer at Duke University in Durham, North Carolina, are relaxed and talkative about their company's plans, even in the presence of a reporter. They tick off reasons why trapped ions, their specialty, will make for a great quantum computer—perfect reproducibility, long lifetimes, and good controllability with lasers.

Das Sarma Receives Third Consecutive Honor as Influential Researcher

For the third year running, JQI Fellow and Distinguished University Professor of Physics Sankar Das Sarma has been identified as a Highly Cited Researcher. The annual distinction, previously compiled by Thomson Reuters IP & Science and now assembled by Clarivate Analytics, honors scientists who publish extensively and whose citation counts rank in the top 1 percent in a given year and field.

Das Sarma, who is also the director of the Condensed Matter Theory Center at UMD, studies everything from exotic low-temperature materials to robust ways of building and operating future quantum computers. He has been regularly recognized for his prolific publication record, with similar honors dating back to 2001.

A physics faculty member at UMD since 1980, Das Sarma received his undergraduate degree in physics in 1973 from Presidency College in Kolkata, India and his Ph.D. in theoretical physics in 1979 from Brown University.

UMD, Italy & MoonEx Join to Put New Laser-Reflecting Arrays on Moon

The University of Maryland, The National Laboratories of Frascati, Italy, and Moon Express (MoonEx), a leading contender in the Google Lunar X Prize competition, recently announced they will deliver a new set of lunar laser ranging arrays to the Moon over a series of missions that are anticipated to begin in 2017.

Physics Professor Michelle Girvan Receives $3M NSF Grant to Train Graduate Students in Network Biology

As researchers in the life sciences cope with the data explosion resulting from the advent of powerful new technologies, they must learn to transform this raw data into useful information from which new biological insights can be inferred.

To address this challenge, the University of Maryland recently received a five-year, $3 million National Science Foundation Research Traineeship (NRT) grant to establish a new training and research program in network biology. Graduate students in the Computation and Mathematics for Biological Networks (COMBINE) program will learn to marry physics-style quantitative modeling with data processing, analysis and visualization methods from computer science to gain deeper insights into the principles governing living systems.

"More data does not mean better information without the interdisciplinary tools required to make the transformation," said COMBINE's principal investigator Michelle Girvan, an associate professor with a joint appointment in the Department of Physics and the Institute for Physical Science and Technology. In her own research, Girvan combines methods from statistical physics, nonlinear dynamics and computer science to develop network science tools that can address problems in computational biology and sociophysics.

The COMBINE program anticipates training approximately 60 Ph.D. students, including 35 who will be supported by 12-month fellowships. Participants will receive training in four areas of network analysis: quantitative metrics for biological networks; mechanistic models of biological networks; network statistics and machine learning for biological applications; and visualization techniques for large, complex biological data sets. This training will provide the foundation for research in at least one of the following areas: biomolecular, neuronal and/or ecological/behavioral networks.

Research experiences, interdisciplinary coursework, peer-to- peer tutorials and internships with partners—including the Smithsonian Institution, the National Institutes of Health, the University of Maryland School of Medicine and industry partners—will provide the graduate students with the skills needed to communicate complex scientific ideas to diverse audiences to maximize impact. Outreach activities will extend the benefits of the program to undergraduates, middle and high school students, and to the public at large. COMBINE brings together a unique, multidisciplinary team of researchers. Co-principal investigators of the program are Associate Professor Daniel Butts and Professor Bill Fagan of the Department of Biology, and Associate Professor Hector Corrada Bravo and Professor Amitabh Varshney of the Department of Computer Science and the University of Maryland Institute for Advanced Computer Studies. Varshney also serves as interim vice president for research and chief research officer at UMD. The highly competitive NRT program fosters development and implementation of bold, new, potentially transformative models for graduate education in science, technology, engineering and mathematics (STEM) fields. Fewer than 10 percent of proposals submitted to the program are funded.

"Innovative and interdisciplinary approaches will be key to tackling tomorrow's scientific challenges, and today's STEM graduate students will need to develop the skills to meet those challenges," said Joan Ferrini-Mundy, NSF assistant director for education and human resources. The NSF Research Traineeship program is testing new models to train graduate students across STEM disciplines and to prepare them for contributions in diverse careers."

Media Relations Contact: Abby Robinson, 301-405- 5845, This email address is being protected from spambots. You need JavaScript enabled to view it.

Writer: Barbara Brawn-Cinani

University of Maryland

College of Computer, Mathematical, and Natural Sciences

2300 Symons Hall,

College Park, MD 20742

www.cmns.umd.edu

@UMDscience

About the College of Computer, Mathematical, and Natural Sciences

The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 7,000 future scientific leaders in its undergraduate and graduate programs each year. The college's 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $150 million.